These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 24788386)
1. Binding to large enzyme pockets: small-molecule inhibitors of trypanothione reductase. Persch E; Bryson S; Todoroff NK; Eberle C; Thelemann J; Dirdjaja N; Kaiser M; Weber M; Derbani H; Brun R; Schneider G; Pai EF; Krauth-Siegel RL; Diederich F ChemMedChem; 2014 Aug; 9(8):1880-91. PubMed ID: 24788386 [TBL] [Abstract][Full Text] [Related]
2. Phenothiazine inhibitors of trypanothione reductase as potential antitrypanosomal and antileishmanial drugs. Chan C; Yin H; Garforth J; McKie JH; Jaouhari R; Speers P; Douglas KT; Rock PJ; Yardley V; Croft SL; Fairlamb AH J Med Chem; 1998 Jan; 41(2):148-56. PubMed ID: 9457238 [TBL] [Abstract][Full Text] [Related]
3. Targeting a Large Active Site: Structure-Based Design of Nanomolar Inhibitors of Trypanosoma brucei Trypanothione Reductase. De Gasparo R; Halgas O; Harangozo D; Kaiser M; Pai EF; Krauth-Siegel RL; Diederich F Chemistry; 2019 Sep; 25(49):11416-11421. PubMed ID: 31407832 [TBL] [Abstract][Full Text] [Related]
4. Biological Evaluation and X-ray Co-crystal Structures of Cyclohexylpyrrolidine Ligands for Trypanothione Reductase, an Enzyme from the Redox Metabolism of Trypanosoma. De Gasparo R; Brodbeck-Persch E; Bryson S; Hentzen NB; Kaiser M; Pai EF; Krauth-Siegel RL; Diederich F ChemMedChem; 2018 May; 13(9):957-967. PubMed ID: 29624890 [TBL] [Abstract][Full Text] [Related]
5. Structural analysis and molecular docking of trypanocidal aryloxy-quinones in trypanothione and glutathione reductases: a comparison with biochemical data. Vera B; Vázquez K; Mascayano C; Tapia RA; Espinosa V; Soto-Delgado J; Salas CO; Paulino M J Biomol Struct Dyn; 2017 Jun; 35(8):1785-1803. PubMed ID: 27232454 [TBL] [Abstract][Full Text] [Related]
6. Synthesis, inhibition potency, binding mode, and antiprotozoal activities of fluorescent inhibitors of trypanothione reductase based on mepacrine-conjugated diaryl sulfide scaffolds. Eberle C; Burkhard JA; Stump B; Kaiser M; Brun R; Krauth-Siegel RL; Diederich F ChemMedChem; 2009 Dec; 4(12):2034-44. PubMed ID: 19847846 [TBL] [Abstract][Full Text] [Related]
7. Improved inhibitors of trypanothione reductase by combination of motifs: synthesis, inhibitory potency, binding mode, and antiprotozoal activities. Eberle C; Lauber BS; Fankhauser D; Kaiser M; Brun R; Krauth-Siegel RL; Diederich F ChemMedChem; 2011 Feb; 6(2):292-301. PubMed ID: 21275053 [TBL] [Abstract][Full Text] [Related]
8. Diaryl sulfide-based inhibitors of trypanothione reductase: inhibition potency, revised binding mode and antiprotozoal activities. Stump B; Eberle C; Kaiser M; Brun R; Krauth-Siegel RL; Diederich F Org Biomol Chem; 2008 Nov; 6(21):3935-47. PubMed ID: 18931800 [TBL] [Abstract][Full Text] [Related]
14. Cynaropicrin targets the trypanothione redox system in Trypanosoma brucei. Zimmermann S; Oufir M; Leroux A; Krauth-Siegel RL; Becker K; Kaiser M; Brun R; Hamburger M; Adams M Bioorg Med Chem; 2013 Nov; 21(22):7202-9. PubMed ID: 24080104 [TBL] [Abstract][Full Text] [Related]
15. Spiro-containing derivatives show antiparasitic activity against Trypanosoma brucei through inhibition of the trypanothione reductase enzyme. Turcano L; Battista T; De Haro ET; Missineo A; Alli C; Paonessa G; Colotti G; Harper S; Fiorillo A; Ilari A; Bresciani A PLoS Negl Trop Dis; 2020 May; 14(5):e0008339. PubMed ID: 32437349 [TBL] [Abstract][Full Text] [Related]
16. Novel aryl β-aminocarbonyl derivatives as inhibitors of Trypanosoma cruzi trypanothione reductase: binding mode revised by docking and GRIND2-based 3D-QSAR procedures. de Paula da Silva CH; Bernardes LS; da Silva VB; Zani CL; Carvalho I J Biomol Struct Dyn; 2012; 29(6):702-16. PubMed ID: 22546000 [TBL] [Abstract][Full Text] [Related]
17. Dibenzosuberyl substituted polyamines and analogs of clomipramine as effective inhibitors of trypanothione reductase; molecular docking, and assessment of trypanocidal activities. O'Sullivan MC; Durham TB; Valdes HE; Dauer KL; Karney NJ; Forrestel AC; Bacchi CJ; Baker JF Bioorg Med Chem; 2015 Mar; 23(5):996-1010. PubMed ID: 25661449 [TBL] [Abstract][Full Text] [Related]
18. Identification and binding mode of a novel Leishmania Trypanothione reductase inhibitor from high throughput screening. Turcano L; Torrente E; Missineo A; Andreini M; Gramiccia M; Di Muccio T; Genovese I; Fiorillo A; Harper S; Bresciani A; Colotti G; Ilari A PLoS Negl Trop Dis; 2018 Nov; 12(11):e0006969. PubMed ID: 30475811 [TBL] [Abstract][Full Text] [Related]
19. Assaying phenothiazine derivatives as trypanothione reductase and glutathione reductase inhibitors by theoretical docking and molecular dynamics studies. Iribarne F; Paulino M; Aguilera S; Tapia O J Mol Graph Model; 2009 Nov; 28(4):371-81. PubMed ID: 19801198 [TBL] [Abstract][Full Text] [Related]
20. Computational and Investigative Study of Flavonoids Active Against Typanosoma cruzi and Leishmania spp. Ribeiro FF; Junior FJ; da Silva MS; Scotti MT; Scotti L Nat Prod Commun; 2015 Jun; 10(6):917-20. PubMed ID: 26197515 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]