These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 24789330)

  • 1. Pen-on-paper approach toward the design of universal surface enhanced Raman scattering substrates.
    Polavarapu L; Porta AL; Novikov SM; Coronado-Puchau M; Liz-Marzán LM
    Small; 2014 Aug; 10(15):3065-71. PubMed ID: 24789330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alkylamine capped metal nanoparticle "inks" for printable SERS substrates, electronics and broadband photodetectors.
    Polavarapu L; Manga KK; Yu K; Ang PK; Cao HD; Balapanuru J; Loh KP; Xu QH
    Nanoscale; 2011 May; 3(5):2268-74. PubMed ID: 21491022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Raman Spectroscopy and Surface Enhanced Raman Scattering (SERS) for the Analysis of Blue and Black Writing Inks: Identification of Dye Content and Degradation Processes.
    Saviello D; Trabace M; Alyami A; Mirabile A; Baglioni P; Giorgi R; Iacopino D
    Front Chem; 2019; 7():727. PubMed ID: 31709241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly sensitive and flexible inkjet printed SERS sensors on paper.
    Hoppmann EP; Yu WW; White IM
    Methods; 2013 Oct; 63(3):219-24. PubMed ID: 23872057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anisotropic surface enhanced Raman scattering in nanoparticle and nanowire arrays.
    Ranjan M; Facsko S
    Nanotechnology; 2012 Dec; 23(48):485307. PubMed ID: 23128982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shape-dependent surface-enhanced Raman scattering in gold-Raman probe-silica sandwiched nanoparticles for biocompatible applications.
    Li M; Cushing SK; Zhang J; Lankford J; Aguilar ZP; Ma D; Wu N
    Nanotechnology; 2012 Mar; 23(11):115501. PubMed ID: 22383452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gold nanorods with finely tunable longitudinal surface plasmon resonance as SERS substrates.
    Smitha SL; Gopchandran KG; Ravindran TR; Prasad VS
    Nanotechnology; 2011 Jul; 22(26):265705. PubMed ID: 21576800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmofluidic single-molecule surface-enhanced Raman scattering from dynamic assembly of plasmonic nanoparticles.
    Patra PP; Chikkaraddy R; Tripathi RP; Dasgupta A; Kumar GV
    Nat Commun; 2014 Jul; 5():4357. PubMed ID: 25000476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solution processed polydimethylsiloxane/gold nanostar flexible substrates for plasmonic sensing.
    Shiohara A; Langer J; Polavarapu L; Liz-Marzán LM
    Nanoscale; 2014 Aug; 6(16):9817-23. PubMed ID: 25027634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A SERS and electrical sensor from gas-phase generated Ag nanoparticles self-assembled on planar substrates.
    Wang S; Tay LL; Liu H
    Analyst; 2016 Mar; 141(5):1721-33. PubMed ID: 26824092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gold nanoparticle-paper as a three-dimensional surface enhanced Raman scattering substrate.
    Ngo YH; Li D; Simon GP; Garnier G
    Langmuir; 2012 Jun; 28(23):8782-90. PubMed ID: 22594710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual-Excitation Nanocellulose Plasmonic Membranes for Molecular and Cellular SERS Detection.
    Zhang S; Xiong R; Mahmoud MA; Quigley EN; Chang H; El-Sayed M; Tsukruk VV
    ACS Appl Mater Interfaces; 2018 May; 10(21):18380-18389. PubMed ID: 29737825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Paper-based SERS swab for rapid trace detection on real-world surfaces.
    Lee CH; Tian L; Singamaneni S
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3429-35. PubMed ID: 21128660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bimetallic gold-silver nanoplate array as a highly active SERS substrate for detection of streptavidin/biotin assemblies.
    Bi L; Dong J; Xie W; Lu W; Tong W; Tao L; Qian W
    Anal Chim Acta; 2013 Dec; 805():95-100. PubMed ID: 24296148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spotting aged dyes on paper with SERS.
    Zoleo A; Rossi C; Poggi G; Rossi M; Meneghetti M; Baglioni P
    Phys Chem Chem Phys; 2020 Nov; 22(41):24070-24076. PubMed ID: 33079093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoparticle-mirror sandwich substrates for surface-enhanced Raman scattering.
    Daniels JK; Chumanov G
    J Phys Chem B; 2005 Sep; 109(38):17936-42. PubMed ID: 16853302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly sensitive surface enhanced Raman scattering substrates based on filter paper loaded with plasmonic nanostructures.
    Lee CH; Hankus ME; Tian L; Pellegrino PM; Singamaneni S
    Anal Chem; 2011 Dec; 83(23):8953-8. PubMed ID: 22017379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoparticle-based substrates for surface-enhanced Raman scattering detection of bacterial spores.
    Cheng HW; Huan SY; Yu RQ
    Analyst; 2012 Aug; 137(16):3601-8. PubMed ID: 22745931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation on the second part of the electromagnetic SERS enhancement and resulting fabrication strategies of anisotropic plasmonic arrays.
    Cialla D; Petschulat J; Hübner U; Schneidewind H; Zeisberger M; Mattheis R; Pertsch T; Schmitt M; Möller R; Popp J
    Chemphyschem; 2010 Jun; 11(9):1918-24. PubMed ID: 20401896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.