BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

713 related articles for article (PubMed ID: 24789348)

  • 61. High-Performance Supercapacitor Electrode Materials from Cellulose-Derived Carbon Nanofibers.
    Cai J; Niu H; Li Z; Du Y; Cizek P; Xie Z; Xiong H; Lin T
    ACS Appl Mater Interfaces; 2015 Jul; 7(27):14946-53. PubMed ID: 26087346
    [TBL] [Abstract][Full Text] [Related]  

  • 62. One-step electrodeposited nickel cobalt sulfide nanosheet arrays for high-performance asymmetric supercapacitors.
    Chen W; Xia C; Alshareef HN
    ACS Nano; 2014 Sep; 8(9):9531-41. PubMed ID: 25133989
    [TBL] [Abstract][Full Text] [Related]  

  • 63. High-Temperature All Solid-State Microsupercapacitors based on SiC Nanowire Electrode and YSZ Electrolyte.
    Chang CH; Hsia B; Alper JP; Wang S; Luna LE; Carraro C; Lu SY; Maboudian R
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26658-65. PubMed ID: 26569457
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Solid-State Thin-Film Supercapacitors with Ultrafast Charge/Discharge Based on N-Doped-Carbon-Tubes/Au-Nanoparticles-Doped-MnO2 Nanocomposites.
    Lv Q; Wang S; Sun H; Luo J; Xiao J; Xiao J; Xiao F; Wang S
    Nano Lett; 2016 Jan; 16(1):40-7. PubMed ID: 26599168
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Nanostructured Electrode Materials Derived from Metal-Organic Framework Xerogels for High-Energy-Density Asymmetric Supercapacitor.
    Mahmood A; Zou R; Wang Q; Xia W; Tabassum H; Qiu B; Zhao R
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2148-57. PubMed ID: 26720405
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Carbon nanofibers grafted on activated carbon as an electrode in high-power supercapacitors.
    Gryglewicz G; Śliwak A; Béguin F
    ChemSusChem; 2013 Aug; 6(8):1516-22. PubMed ID: 23794416
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Construction of TiO
    Zhang Z; Yao Z; Meng Y; Li D; Xia Q; Jiang Z
    Inorg Chem; 2019 Jan; 58(2):1591-1598. PubMed ID: 30628794
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Flexible Zn2SnO4/MnO2 core/shell nanocable-carbon microfiber hybrid composites for high-performance supercapacitor electrodes.
    Bao L; Zang J; Li X
    Nano Lett; 2011 Mar; 11(3):1215-20. PubMed ID: 21306113
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Turning conductive carbon nanospheres into nanosheets for high-performance supercapacitors of MnO2 nanorods.
    Phattharasupakun N; Wutthiprom J; Chiochan P; Suktha P; Suksomboon M; Kalasina S; Sawangphruk M
    Chem Commun (Camb); 2016 Feb; 52(12):2585-8. PubMed ID: 26750504
    [TBL] [Abstract][Full Text] [Related]  

  • 70. "One-for-All" strategy to design oxygen-deficient triple-shelled MnO
    Jia H; Liang H; Wang Z; Li C; Zheng X; Cai Y; Qi J; Cao J; Feng J; Fei W
    Dalton Trans; 2019 Jun; 48(24):8623-8632. PubMed ID: 31107477
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Controlled synthesis of MnO
    Gao H; Xiang J; Cao Y
    Nanotechnology; 2017 Jun; 28(23):235401. PubMed ID: 28443828
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A 3D walking palm-like core-shell CoMoO
    Hussain I; Ali A; Lamiel C; Mohamed SG; Sahoo S; Shim JJ
    Dalton Trans; 2019 Mar; 48(12):3853-3861. PubMed ID: 30706928
    [TBL] [Abstract][Full Text] [Related]  

  • 73. High-performance asymmetric supercapacitors based on monodisperse MnO nanocrystals with high energy densities.
    Li M; Lei W; Yu Y; Yang W; Li J; Chen D; Xu S; Feng M; Li H
    Nanoscale; 2018 Aug; 10(34):15926-15931. PubMed ID: 30113063
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Hierarchical nanostructures of polypyrrole@MnO2 composite electrodes for high performance solid-state asymmetric supercapacitors.
    Tao J; Liu N; Li L; Su J; Gao Y
    Nanoscale; 2014 Mar; 6(5):2922-8. PubMed ID: 24477696
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Cobalt hexacyanoferrate nanoparticles as a high-rate and ultra-stable supercapacitor electrode material.
    Zhao F; Wang Y; Xu X; Liu Y; Song R; Lu G; Li Y
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11007-12. PubMed ID: 24999744
    [TBL] [Abstract][Full Text] [Related]  

  • 76. MnO
    Youe WJ; Kim SJ; Lee SM; Chun SJ; Kang J; Kim YS
    Int J Biol Macromol; 2018 Jun; 112():943-950. PubMed ID: 29438754
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Simple synthesis of amorphous NiWO4 nanostructure and its application as a novel cathode material for asymmetric supercapacitors.
    Niu L; Li Z; Xu Y; Sun J; Hong W; Liu X; Wang J; Yang S
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):8044-52. PubMed ID: 23910723
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Hierarchical structures composed of MnCo2O4@MnO2 core-shell nanowire arrays with enhanced supercapacitor properties.
    Zheng X; Ye Y; Yang Q; Geng B; Zhang X
    Dalton Trans; 2016 Jan; 45(2):572-8. PubMed ID: 26608410
    [TBL] [Abstract][Full Text] [Related]  

  • 79. MnO
    Li XS; Xu MM; Yang Y; Huang QB; Wang XY; Ren JL; Wang XH
    Materials (Basel); 2019 Jul; 12(15):. PubMed ID: 31357382
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Sodium Pre-Intercalation-Based Na
    Rahman AU; Zarshad N; Jianghua W; Shah M; Ullah S; Li G; Tariq M; Ali A
    Nanomaterials (Basel); 2022 Aug; 12(16):. PubMed ID: 36014721
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 36.