BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 24789468)

  • 1. Adsorption of 2,3,7,8-tetrochlorodibenzo-p-dioxins on intrinsic, defected, and Ti (N, Ag) doped graphene: a DFT study.
    Zhang H; He W; Luo X; Lin X; Lu X
    J Mol Model; 2014 May; 20(5):2238. PubMed ID: 24789468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Band structure of graphene modulated by Ti or N dopants and applications in gas sensoring.
    Zhang HP; Luo XG; Lin XY; Zhang YP; Tang PP; Lu X; Tang Y
    J Mol Graph Model; 2015 Sep; 61():224-30. PubMed ID: 26295685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption behavior of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin on pristine and doped black phosphorene: A DFT study.
    Zhang HP; Hou JL; Wang Y; Tang PP; Zhang YP; Lin XY; Liu C; Tang Y
    Chemosphere; 2017 Oct; 185():509-517. PubMed ID: 28715762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DFT study of the adsorption of 2,3,7,8-tetrachlorodibenzo-p-dioxin on pristine and Ni-doped boron nitride nanotubes.
    Wang R; Zhang D; Liu C
    Chemosphere; 2017 Feb; 168():18-24. PubMed ID: 27776234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption of TCDD with 1-butyl-3-methylimidazolium dicyanamide ionic liquid: a combined molecular dynamics simulation and quantum chemistry study.
    Pan W; Qi Y; Wang R; Han Z; Zhang D; Zhan J
    Chemosphere; 2013 Apr; 91(2):157-64. PubMed ID: 23336926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study.
    Zhang YH; Chen YB; Zhou KG; Liu CH; Zeng J; Zhang HL; Peng Y
    Nanotechnology; 2009 May; 20(18):185504. PubMed ID: 19420616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of unified impact of Ti adatom and N doping on hydrogen gas adsorption capabilities of defected graphene sheets.
    Luhadiya N; Choyal V; Kundalwal SI; Sahu SK
    J Mol Graph Model; 2023 Mar; 119():108399. PubMed ID: 36563644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced activation of peroxymonosulfate by nitrogen-doped graphene/TiO
    Zhao Y; Wang G; Li L; Dong X; Zhang X
    Chemosphere; 2020 Apr; 244():125526. PubMed ID: 31821928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissociative adsorption of 2,3,7,8-TCDD on the surfaces of typical metal oxides: a first-principles density functional theory study.
    Zhao S; Ma X; Pang Q; Sun H; Wang G
    Phys Chem Chem Phys; 2014 Mar; 16(12):5553-62. PubMed ID: 24513975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing the photocatalytic activity of TiO2 co-doping of graphene-Fe3+ ions for formaldehyde removal.
    Low W; Boonamnuayvitaya V
    J Environ Manage; 2013 Sep; 127():142-9. PubMed ID: 23694821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-pot hydrothermal route to fabricate nitrogen doped graphene/Ag-TiO2: Efficient charge separation, and high-performance "on-off-on" switch system based photoelectrochemical biosensing.
    Jiang D; Du X; Chen D; Zhou L; Chen W; Li Y; Hao N; Qian J; Liu Q; Wang K
    Biosens Bioelectron; 2016 Sep; 83():149-55. PubMed ID: 27108257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Si-doped graphene: an ideal sensor for NO- or NO2-detection and metal-free catalyst for N2O-reduction.
    Chen Y; Gao B; Zhao JX; Cai QH; Fu HG
    J Mol Model; 2012 May; 18(5):2043-54. PubMed ID: 21881853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrostatic doping of graphene through ultrathin hexagonal boron nitride films.
    Bokdam M; Khomyakov PA; Brocks G; Zhong Z; Kelly PJ
    Nano Lett; 2011 Nov; 11(11):4631-5. PubMed ID: 21936569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple signal-amplification via Ag and TiO
    Hao N; Hua R; Chen S; Zhang Y; Zhou Z; Qian J; Liu Q; Wang K
    Biosens Bioelectron; 2018 Mar; 101():14-20. PubMed ID: 29031885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A large gap opening of graphene induced by the adsorption of CO on the Al-doped site.
    Peyghan AA; Noei M; Tabar MB
    J Mol Model; 2013 Aug; 19(8):3007-14. PubMed ID: 23564329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Derivation of biomonitoring equivalent (BE) values for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds: a screening tool for interpretation of biomonitoring data in a risk assessment context.
    Aylward LL; Lakind JS; Hays SM
    J Toxicol Environ Health A; 2008; 71(22):1499-508. PubMed ID: 18836925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical Investigations on the Reactivity of Hydrogen Peroxide toward 2,3,7,8-Tetrachlorodibenzo-
    Wang W; Wang Y; Feng W; Wang W; Li P
    Molecules; 2018 Oct; 23(11):. PubMed ID: 30384440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum chemistry study on the destruction mechanism of 2,3,7,8-TCDD by OH and O(3) radicals.
    Wen Z; Wang Z; Xu J; Liu Y; Cen K
    Chemosphere; 2013 Jul; 92(3):293-8. PubMed ID: 23642639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxygen reduction reactions on pure and nitrogen-doped graphene: a first-principles modeling.
    Boukhvalov DW; Son YW
    Nanoscale; 2012 Jan; 4(2):417-20. PubMed ID: 22113262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TCDD Toxicity Mediated by Epigenetic Mechanisms.
    Patrizi B; Siciliani de Cumis M
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30567322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.