These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 24789526)
41. Phytoremediation potential of wheat intercropped with different densities of Sedum plumbizincicola in soil contaminated with cadmium and zinc. Zou J; Song F; Lu Y; Zhuge Y; Niu Y; Lou Y; Pan H; Zhang P; Pang L Chemosphere; 2021 Aug; 276():130223. PubMed ID: 34088099 [TBL] [Abstract][Full Text] [Related]
42. Effects of CO Tang L; Hamid Y; Gurajala HK; He Z; Yang X Environ Sci Pollut Res Int; 2019 Jan; 26(2):1809-1820. PubMed ID: 30456615 [TBL] [Abstract][Full Text] [Related]
43. [Strengthening the effect of Deng YQ; Cao XY; Tan CY; Sun LJ; Peng X; Bai J; Huang SP Ying Yong Sheng Tai Xue Bao; 2020 Sep; 31(9):3111-3118. PubMed ID: 33345513 [TBL] [Abstract][Full Text] [Related]
44. Formation of iron plaque on roots of Iris pseudacorus and its consequence for cadmium immobilization is impacted by zinc concentration. Ma H; Gao F; Zhang X; Cui B; Liu Y; Li Z Ecotoxicol Environ Saf; 2020 Apr; 193():110306. PubMed ID: 32109586 [TBL] [Abstract][Full Text] [Related]
45. Exogenous application of Mn significantly increased Cd accumulation in the Cd/Zn hyperaccumulator Sedum alfredii. Ge J; Tian S; Yu H; Zhao J; Chen J; Pan L; Xie R; Lu L Environ Pollut; 2021 Jun; 278():116837. PubMed ID: 33706243 [TBL] [Abstract][Full Text] [Related]
46. Role of sulfur assimilation pathway in cadmium hyperaccumulation by Sedum alfredii Hance. Liang J; Shohag MJ; Yang X; Tian S; Zhang Y; Feng Y; He Z Ecotoxicol Environ Saf; 2014 Feb; 100():159-65. PubMed ID: 24239266 [TBL] [Abstract][Full Text] [Related]
47. Purified isolation of vacuoles from Sedum alfredii leaf-derived protoplasts. Gao XY; Liao XC; Wu RL; Liu T; Wang HX; Lu LL J Zhejiang Univ Sci B; 2017 Jan.; 18(1):85-88. PubMed ID: 28071001 [TBL] [Abstract][Full Text] [Related]
48. Effects of zinc and cadmium interactions on root morphology and metal translocation in a hyperaccumulating species under hydroponic conditions. Li T; Yang X; Lu L; Islam E; He Z J Hazard Mater; 2009 Sep; 169(1-3):734-41. PubMed ID: 19427116 [TBL] [Abstract][Full Text] [Related]
49. Subcellular distribution and chemical form of Cd and Cd-Zn interaction in different barley genotypes. Wu FB; Dong J; Qian QQ; Zhang GP Chemosphere; 2005 Sep; 60(10):1437-46. PubMed ID: 16054913 [TBL] [Abstract][Full Text] [Related]
50. Colonization and modulation of host growth and metal uptake by endophytic bacteria of Sedum alfredii. Zhang X; Lin L; Zhu Z; Yang X; Wang Y; An Q Int J Phytoremediation; 2013; 15(1):51-64. PubMed ID: 23487985 [TBL] [Abstract][Full Text] [Related]
51. Aluminum toxicity decreases the phytoextraction capability by cadmium/zinc hyperaccumulator Sedum plumbizincicola in acid soils. Zhou J; Li Z; Zhou T; Xin Z; Wu L; Luo Y; Christie P Sci Total Environ; 2020 Apr; 711():134591. PubMed ID: 31822411 [TBL] [Abstract][Full Text] [Related]
52. Increase of glutathione in mine population of Sedum alfredii: a Zn hyperaccumulator and Pb accumulator. Sun Q; Ye ZH; Wang XR; Wong MH Phytochemistry; 2005 Nov; 66(21):2549-56. PubMed ID: 16225897 [TBL] [Abstract][Full Text] [Related]
53. Metallothionein 2 (SaMT2) from Sedum alfredii Hance confers increased Cd tolerance and accumulation in yeast and tobacco. Zhang J; Zhang M; Tian S; Lu L; Shohag MJ; Yang X PLoS One; 2014; 9(7):e102750. PubMed ID: 25032704 [TBL] [Abstract][Full Text] [Related]
54. Enhanced expression of SaHMA3 plays critical roles in Cd hyperaccumulation and hypertolerance in Cd hyperaccumulator Sedum alfredii Hance. Zhang J; Zhang M; Shohag MJ; Tian S; Song H; Feng Y; Yang X Planta; 2016 Mar; 243(3):577-89. PubMed ID: 26547194 [TBL] [Abstract][Full Text] [Related]
55. Phytoextraction potential of soils highly polluted with cadmium using the cadmium/zinc hyperaccumulator Fan Y; Li Z; Zhou T; Zhou S; Wu L; Luo Y; Christie P Int J Phytoremediation; 2019; 21(8):733-741. PubMed ID: 30746960 [TBL] [Abstract][Full Text] [Related]
56. Repeated phytoextraction of metal contaminated calcareous soil by hyperaccumulator Zhou T; Zhu D; Wu L; Xing W; Luo Y; Christie P Int J Phytoremediation; 2018; 20(12):1243-1249. PubMed ID: 29843530 [TBL] [Abstract][Full Text] [Related]
57. Exploring Transcriptional Regulation of Hyperaccumulation in Zhang Y; Mo Y; Han L; Sun Z; Xu W Int J Mol Sci; 2023 Jul; 24(14):. PubMed ID: 37511604 [TBL] [Abstract][Full Text] [Related]
58. Estimating cadmium availability to the hyperaccumulator Sedum plumbizincicola in a wide range of soil types using a piecewise function. Wu L; Zhou J; Zhou T; Li Z; Jiang J; Zhu D; Hou J; Wang Z; Luo Y; Christie P Sci Total Environ; 2018 Oct; 637-638():1342-1350. PubMed ID: 29801226 [TBL] [Abstract][Full Text] [Related]
59. [Effects of amendments on the alleviation of aluminum toxicity and cadmium and zinc uptake by Sedum plumbizincicola in acid soils]. Chen S; Zhou J; Liu H; Luo Y; Wu L; Xin Z Sheng Wu Gong Cheng Xue Bao; 2020 Mar; 36(3):529-540. PubMed ID: 32237546 [TBL] [Abstract][Full Text] [Related]
60. Rhizosphere characteristics of zinc hyperaccumulator Sedum alfredii involved in zinc accumulation. Li T; Di Z; Islam E; Jiang H; Yang X J Hazard Mater; 2011 Jan; 185(2-3):818-23. PubMed ID: 20970251 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]