These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 24790108)

  • 21. Renal tumours in a Tsc2(+/-) mouse model do not show feedback inhibition of Akt and are effectively prevented by rapamycin.
    Yang J; Kalogerou M; Samsel PA; Zhang Y; Griffiths DF; Gallacher J; Sampson JR; Shen MH
    Oncogene; 2015 Feb; 34(7):922-31. PubMed ID: 24632604
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nutrient signaling to mTOR and cell growth.
    Jewell JL; Guan KL
    Trends Biochem Sci; 2013 May; 38(5):233-42. PubMed ID: 23465396
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Activation of AMPK/TSC2/PLD by alcohol regulates mTORC1 and mTORC2 assembly in C2C12 myocytes.
    Hong-Brown LQ; Brown CR; Navaratnarajah M; Lang CH
    Alcohol Clin Exp Res; 2013 Nov; 37(11):1849-61. PubMed ID: 23895284
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A comparison of Ku0063794, a dual mTORC1 and mTORC2 inhibitor, and temsirolimus in preclinical renal cell carcinoma models.
    Zhang H; Berel D; Wang Y; Li P; Bhowmick NA; Figlin RA; Kim HL
    PLoS One; 2013; 8(1):e54918. PubMed ID: 23349989
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PDGF receptor-β uses Akt/mTORC1 signaling node to promote high glucose-induced renal proximal tubular cell collagen I (α2) expression.
    Das F; Ghosh-Choudhury N; Venkatesan B; Kasinath BS; Ghosh Choudhury G
    Am J Physiol Renal Physiol; 2017 Aug; 313(2):F291-F307. PubMed ID: 28424212
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rapamycin prevents cadmium-induced neuronal cell death via targeting both mTORC1 and mTORC2 pathways.
    Xu C; Liu C; Liu L; Zhang R; Zhang H; Chen S; Luo Y; Chen L; Huang S
    Neuropharmacology; 2015 Oct; 97():35-45. PubMed ID: 26002629
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanistic target of rapamycin complex 2 protects the heart from ischemic damage.
    Völkers M; Konstandin MH; Doroudgar S; Toko H; Quijada P; Din S; Joyo A; Ornelas L; Samse K; Thuerauf DJ; Gude N; Glembotski CC; Sussman MA
    Circulation; 2013 Nov; 128(19):2132-44. PubMed ID: 24008870
    [TBL] [Abstract][Full Text] [Related]  

  • 28. ERK1/2-dependent activation of mTOR/mTORC1/p70S6K regulates thrombin-induced RPE cell proliferation.
    Parrales A; López E; Lee-Rivera I; López-Colomé AM
    Cell Signal; 2013 Apr; 25(4):829-38. PubMed ID: 23291002
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Autoregulation of the mechanistic target of rapamycin (mTOR) complex 2 integrity is controlled by an ATP-dependent mechanism.
    Chen CH; Kiyan V; Zhylkibayev AA; Kazyken D; Bulgakova O; Page KE; Bersimbaev RI; Spooner E; Sarbassov DD
    J Biol Chem; 2013 Sep; 288(38):27019-27030. PubMed ID: 23928304
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reciprocal regulation of mTOR complexes in pancreatic islets from humans with type 2 diabetes.
    Yuan T; Rafizadeh S; Gorrepati KD; Lupse B; Oberholzer J; Maedler K; Ardestani A
    Diabetologia; 2017 Apr; 60(4):668-678. PubMed ID: 28004151
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fetal brain mTOR signaling activation in tuberous sclerosis complex.
    Tsai V; Parker WE; Orlova KA; Baybis M; Chi AW; Berg BD; Birnbaum JF; Estevez J; Okochi K; Sarnat HB; Flores-Sarnat L; Aronica E; Crino PB
    Cereb Cortex; 2014 Feb; 24(2):315-27. PubMed ID: 23081885
    [TBL] [Abstract][Full Text] [Related]  

  • 32. mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1).
    García-Martínez JM; Alessi DR
    Biochem J; 2008 Dec; 416(3):375-85. PubMed ID: 18925875
    [TBL] [Abstract][Full Text] [Related]  

  • 33. mTORC1 inhibition increases neurotensin secretion and gene expression through activation of the MEK/ERK/c-Jun pathway in the human endocrine cell line BON.
    Li J; Liu J; Song J; Wang X; Weiss HL; Townsend CM; Gao T; Evers BM
    Am J Physiol Cell Physiol; 2011 Jul; 301(1):C213-26. PubMed ID: 21508335
    [TBL] [Abstract][Full Text] [Related]  

  • 34. mTORC1 and mTORC2 Co-Protect against Cadmium-Induced Renal Tubular Epithelial Cell Apoptosis and Acute Kidney Injury by Regulating Protein Kinase B.
    Zhu J; Gong Z; Wang X; Zhang K; Ma Y; Zou H; Song R; Zhao H; Liu Z; Dong W
    J Agric Food Chem; 2024 Sep; 72(36):19667-19679. PubMed ID: 39219293
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microtubule-associated protein/microtubule affinity-regulating kinase 4 (MARK4) is a negative regulator of the mammalian target of rapamycin complex 1 (mTORC1).
    Li L; Guan KL
    J Biol Chem; 2013 Jan; 288(1):703-8. PubMed ID: 23184942
    [TBL] [Abstract][Full Text] [Related]  

  • 36. mTORC1 signaling can regulate growth factor activation of p44/42 mitogen-activated protein kinases through protein phosphatase 2A.
    Harwood FC; Shu L; Houghton PJ
    J Biol Chem; 2008 Feb; 283(5):2575-85. PubMed ID: 18056704
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulatory effects of mTORC2 complexes in type I IFN signaling and in the generation of IFN responses.
    Kaur S; Sassano A; Majchrzak-Kita B; Baker DP; Su B; Fish EN; Platanias LC
    Proc Natl Acad Sci U S A; 2012 May; 109(20):7723-8. PubMed ID: 22550181
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR).
    García-Martínez JM; Moran J; Clarke RG; Gray A; Cosulich SC; Chresta CM; Alessi DR
    Biochem J; 2009 Jun; 421(1):29-42. PubMed ID: 19402821
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Targeting of mTORC2 may have advantages over selective targeting of mTORC1 in the treatment of malignant pheochromocytoma.
    Zhang X; Wang X; Xu T; Zhong S; Shen Z
    Tumour Biol; 2015 Jul; 36(7):5273-81. PubMed ID: 25666752
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Activation of glycogen synthase kinase 3β ameliorates diabetes-induced kidney injury.
    Mariappan MM; Prasad S; D'Silva K; Cedillo E; Sataranatarajan K; Barnes JL; Choudhury GG; Kasinath BS
    J Biol Chem; 2014 Dec; 289(51):35363-75. PubMed ID: 25339176
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.