These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 24790156)

  • 1. Vacceed: a high-throughput in silico vaccine candidate discovery pipeline for eukaryotic pathogens based on reverse vaccinology.
    Goodswen SJ; Kennedy PJ; Ellis JT
    Bioinformatics; 2014 Aug; 30(16):2381-3. PubMed ID: 24790156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. VacSol: a high throughput in silico pipeline to predict potential therapeutic targets in prokaryotic pathogens using subtractive reverse vaccinology.
    Rizwan M; Naz A; Ahmad J; Naz K; Obaid A; Parveen T; Ahsan M; Ali A
    BMC Bioinformatics; 2017 Feb; 18(1):106. PubMed ID: 28193166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel strategy for classifying the output from an in silico vaccine discovery pipeline for eukaryotic pathogens using machine learning algorithms.
    Goodswen SJ; Kennedy PJ; Ellis JT
    BMC Bioinformatics; 2013 Nov; 14():315. PubMed ID: 24180526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational Antigen Discovery for Eukaryotic Pathogens Using Vacceed.
    Goodswen SJ; Kennedy PJ; Ellis JT
    Methods Mol Biol; 2021; 2183():29-42. PubMed ID: 32959239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A guide to in silico vaccine discovery for eukaryotic pathogens.
    Goodswen SJ; Kennedy PJ; Ellis JT
    Brief Bioinform; 2013 Nov; 14(6):753-74. PubMed ID: 23097412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NERVE: new enhanced reverse vaccinology environment.
    Vivona S; Bernante F; Filippini F
    BMC Biotechnol; 2006 Jul; 6():35. PubMed ID: 16848907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developing vaccines in the era of genomics: a decade of reverse vaccinology.
    Seib KL; Zhao X; Rappuoli R
    Clin Microbiol Infect; 2012 Oct; 18 Suppl 5():109-16. PubMed ID: 22882709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of Open-Source Reverse Vaccinology Programs for Bacterial Vaccine Antigen Discovery.
    Dalsass M; Brozzi A; Medini D; Rappuoli R
    Front Immunol; 2019; 10():113. PubMed ID: 30837982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Gene-Based Positive Selection Detection Approach to Identify Vaccine Candidates Using
    Goodswen SJ; Kennedy PJ; Ellis JT
    Front Genet; 2018; 9():332. PubMed ID: 30177953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ReVac: a reverse vaccinology computational pipeline for prioritization of prokaryotic protein vaccine candidates.
    D'Mello A; Ahearn CP; Murphy TF; Tettelin H
    BMC Genomics; 2019 Dec; 20(1):981. PubMed ID: 31842745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scalable machine learning-assisted model exploration and inference using Sciope.
    Singh P; Wrede F; Hellander A
    Bioinformatics; 2021 Apr; 37(2):279-281. PubMed ID: 32706854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reverse vaccinology.
    Mora M; Veggi D; Santini L; Pizza M; Rappuoli R
    Drug Discov Today; 2003 May; 8(10):459-64. PubMed ID: 12801798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preliminary Work Towards Finding Proteins as Potential Vaccine Candidates for
    Zeb S; Ali A; Gulfam SM; Bokhari H
    Medicina (Kaunas); 2019 May; 55(5):. PubMed ID: 31126058
    [No Abstract]   [Full Text] [Related]  

  • 14. VisFeature: a stand-alone program for visualizing and analyzing statistical features of biological sequences.
    Wang J; Du PF; Xue XY; Li GP; Zhou YK; Zhao W; Lin H; Chen W
    Bioinformatics; 2020 Feb; 36(4):1277-1278. PubMed ID: 31504195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PCR diagnostics: In silico validation by an automated tool using freely available software programs.
    van Weezep E; Kooi EA; van Rijn PA
    J Virol Methods; 2019 Aug; 270():106-112. PubMed ID: 31095975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reverse vaccinology, a genome-based approach to vaccine development.
    Rappuoli R
    Vaccine; 2001 Mar; 19(17-19):2688-91. PubMed ID: 11257410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A reverse vaccinology approach for the identification of potential vaccine candidates from Leishmania spp.
    John L; John GJ; Kholia T
    Appl Biochem Biotechnol; 2012 Jul; 167(5):1340-50. PubMed ID: 22434357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AutoMolDesigner for Antibiotic Discovery: An AI-Based Open-Source Software for Automated Design of Small-Molecule Antibiotics.
    Shen T; Guo J; Han Z; Zhang G; Liu Q; Si X; Wang D; Wu S; Xia J
    J Chem Inf Model; 2024 Feb; 64(3):575-583. PubMed ID: 38265916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pathogen-Host Analysis Tool (PHAT): an integrative platform to analyze next-generation sequencing data.
    Gibb CM; Jackson R; Mohammed S; Fiaidhi J; Zehbe I
    Bioinformatics; 2019 Aug; 35(15):2665-2667. PubMed ID: 30561651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vaxign: the first web-based vaccine design program for reverse vaccinology and applications for vaccine development.
    He Y; Xiang Z; Mobley HL
    J Biomed Biotechnol; 2010; 2010():297505. PubMed ID: 20671958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.