These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 24790571)

  • 1. New fuzzy support vector machine for the class imbalance problem in medical datasets classification.
    Gu X; Ni T; Wang H
    ScientificWorldJournal; 2014; 2014():536434. PubMed ID: 24790571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relative Density-Based Intuitionistic Fuzzy SVM for Class Imbalance Learning.
    Fu C; Zhou S; Zhang D; Chen L
    Entropy (Basel); 2022 Dec; 25(1):. PubMed ID: 36673175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Learning-Based Imbalanced Classification With Fuzzy Support Vector Machine.
    Wang KF; An J; Wei Z; Cui C; Ma XH; Ma C; Bao HQ
    Front Bioeng Biotechnol; 2021; 9():802712. PubMed ID: 35127672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near-Bayesian Support Vector Machines for imbalanced data classification with equal or unequal misclassification costs.
    Datta S; Das S
    Neural Netw; 2015 Oct; 70():39-52. PubMed ID: 26210983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classification of Benign and Malignant Breast Masses on Mammograms for Large Datasets using Core Vector Machines.
    Jebamony J; Jacob D
    Curr Med Imaging; 2020; 16(6):703-710. PubMed ID: 32723242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Affinity and class probability-based fuzzy support vector machine for imbalanced data sets.
    Tao X; Li Q; Ren C; Guo W; He Q; Liu R; Zou J
    Neural Netw; 2020 Feb; 122():289-307. PubMed ID: 31739268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Class-specific extreme learning machine for handling binary class imbalance problem.
    Raghuwanshi BS; Shukla S
    Neural Netw; 2018 Sep; 105():206-217. PubMed ID: 29870928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fuzzy support vector machine with joint optimization of genetic algorithm and fuzzy c-means.
    Li MA; Wang RT; Wei LN
    Technol Health Care; 2021; 29(5):921-937. PubMed ID: 33459673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fuzzy support vector machine for classification of EEG signals using wavelet-based features.
    Xu Q; Zhou H; Wang Y; Huang J
    Med Eng Phys; 2009 Sep; 31(7):858-65. PubMed ID: 19487151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new fuzzy support vectors machine for biomedical data classification.
    Czajkowska J; Rudzki M; Czajkowski Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4676-9. PubMed ID: 19163759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Universum based Lagrangian twin bounded support vector machine to classify EEG signals.
    Kumar B; Gupta D
    Comput Methods Programs Biomed; 2021 Sep; 208():106244. PubMed ID: 34216880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A learning method for the class imbalance problem with medical data sets.
    Li DC; Liu CW; Hu SC
    Comput Biol Med; 2010 May; 40(5):509-18. PubMed ID: 20347072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clustering-based undersampling with random over sampling examples and support vector machine for imbalanced classification of breast cancer diagnosis.
    Zhang J; Chen L
    Comput Assist Surg (Abingdon); 2019 Oct; 24(sup2):62-72. PubMed ID: 31403330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel support vector machine with globality-locality preserving.
    Ma CL; Yuan YB
    ScientificWorldJournal; 2014; 2014():872697. PubMed ID: 25045750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparative study of surface EMG classification by fuzzy relevance vector machine and fuzzy support vector machine.
    Xie HB; Huang H; Wu J; Liu L
    Physiol Meas; 2015 Feb; 36(2):191-206. PubMed ID: 25571959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inverse free reduced universum twin support vector machine for imbalanced data classification.
    Moosaei H; Ganaie MA; Hladík M; Tanveer M
    Neural Netw; 2023 Jan; 157():125-135. PubMed ID: 36334534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust support vector machine-trained fuzzy system.
    Forghani Y; Yazdi HS
    Neural Netw; 2014 Feb; 50():154-65. PubMed ID: 24316676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of S-sulfenylation sites using mRMR feature selection and fuzzy support vector machine algorithm.
    Ju Z; Wang SY
    J Theor Biol; 2018 Nov; 457():6-13. PubMed ID: 30125576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Grouped fuzzy SVM with EM-based partition of sample space for clustered microcalcification detection.
    Wang H; Feng J; Wang H
    Technol Health Care; 2017 Jul; 25(S1):325-336. PubMed ID: 28582921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Possibilistic classification by support vector networks.
    Hao PY; Chiang JH; Chen YD
    Neural Netw; 2022 May; 149():40-56. PubMed ID: 35189529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.