BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 24790582)

  • 1. Path-following control of wheeled planetary exploration robots moving on deformable rough terrain.
    Ding L; Gao HB; Deng ZQ; Li Z; Xia KR; Duan GR
    ScientificWorldJournal; 2014; 2014():793526. PubMed ID: 24790582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coordinated control of slip ratio for wheeled mobile robots climbing loose sloped terrain.
    Li Z; Wang Y
    ScientificWorldJournal; 2014; 2014():396382. PubMed ID: 25276849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of slip rate-dependent traversability for path planning of wheeled mobile robot in sandy terrain.
    Sakayori G; Ishigami G
    Front Robot AI; 2024; 11():1320261. PubMed ID: 38332951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Path Planning for Wheeled Mobile Robot in Partially Known Uneven Terrain.
    Zhang B; Li G; Zheng Q; Bai X; Ding Y; Khan A
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cross-coupled control for all-terrain rovers.
    Reina G
    Sensors (Basel); 2013 Jan; 13(1):785-800. PubMed ID: 23299625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model Predictive Control of a Novel Wheeled-Legged Planetary Rover for Trajectory Tracking.
    He J; Sun Y; Yang L; Gao F
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Universal Path-Following of Wheeled Mobile Robots: A Closed-Form Bounded Velocity Solution.
    Oftadeh R; Ghabcheloo R; Mattila J
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics modeling and path following controller of tractor-trailer-wheeled robots considering wheels slip.
    Babaei Robat A; Arezoo K; Alipour K; Tarvirdizadeh B
    ISA Trans; 2024 May; 148():45-63. PubMed ID: 38480087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards Camera-LIDAR Fusion-Based Terrain Modelling for Planetary Surfaces: Review and Analysis.
    Shaukat A; Blacker PC; Spiteri C; Gao Y
    Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27879625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomimetic lizard robot for adapting to Martian surface terrain.
    Chen G; Qiao L; Zhou Z; Lei X; Zou M; Richter L; Ji A
    Bioinspir Biomim; 2024 Mar; 19(3):. PubMed ID: 38452382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimizing and designing a leg shape to increase robustness of a running robot on rough terrain.
    Gaathon A; Degani A
    Bioinspir Biomim; 2022 Nov; 17(6):. PubMed ID: 36270611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Slip-Based Autonomous ZUPT through Gaussian Process to Improve Planetary Rover Localization.
    Kilic C; Ohi N; Gu Y; Gross JN
    IEEE Robot Autom Lett; 2021 Jul; 6(3):4782-4789. PubMed ID: 33969183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unscented Kalman Filter-Trained Neural Networks for Slip Model Prediction.
    Li Z; Wang Y; Liu Z
    PLoS One; 2016; 11(7):e0158492. PubMed ID: 27467703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient bipedal locomotion on rough terrain via compliant ankle actuation with energy regulation.
    Kerimoglu D; Karkoub M; Ismail U; Morgul O; Saranli U
    Bioinspir Biomim; 2021 Aug; 16(5):. PubMed ID: 34256362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards terrain interaction prediction for bioinspired planetary exploration rovers.
    Yeomans B; Saaj CM
    Bioinspir Biomim; 2014 Mar; 9(1):016009. PubMed ID: 24434658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis and experimental kinematics of a skid-steering wheeled robot based on a laser scanner sensor.
    Wang T; Wu Y; Liang J; Han C; Chen J; Zhao Q
    Sensors (Basel); 2015 Apr; 15(5):9681-702. PubMed ID: 25919370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-constraint spatial coupling for the body joint quadruped robot and the CPG control method on rough terrain.
    Song G; Ai Q; Tong H; Xu J; Zhu S
    Bioinspir Biomim; 2023 Sep; 18(5):. PubMed ID: 37611613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scientific exploration of challenging planetary analog environments with a team of legged robots.
    Arm P; Waibel G; Preisig J; Tuna T; Zhou R; Bickel V; Ligeza G; Miki T; Kehl F; Kolvenbach H; Hutter M
    Sci Robot; 2023 Jul; 8(80):eade9548. PubMed ID: 37436970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cooperative path following control of multiple nonholonomic mobile robots.
    Cao KC; Jiang B; Yue D
    ISA Trans; 2017 Nov; 71(Pt 1):161-169. PubMed ID: 28709652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vibration-Based Recognition of Wheel-Terrain Interaction for Terramechanics Model Selection and Terrain Parameter Identification for Lugged-Wheel Planetary Rovers.
    Lv F; Li N; Gao H; Ding L; Deng Z; Yu H; Liu Z
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.