BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 24791016)

  • 1. A numerical study of blood flow using mixture theory.
    Wu WT; Aubry N; Massoudi M; Kim J; Antaki JF
    Int J Eng Sci; 2014 Mar; 76():56-72. PubMed ID: 24791016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling and numerical simulation of blood flow using the Theory of Interacting Continua.
    Massoudi M; Kim J; Antaki JF
    Int J Non Linear Mech; 2012 Jun; 47(5):506-520. PubMed ID: 22611284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A non-linear fluid suspension model for blood flow.
    Wu WT; Aubry N; Antaki JF; Massoudi M
    Int J Non Linear Mech; 2019 Mar; 109():32-39. PubMed ID: 31447489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electro-osmotic peristaltic flow and heat transfer in an ionic viscoelastic fluid through a curved micro-channel with viscous dissipation.
    Khan AA; Akram K; Zaman A; Anwar Bég O; Bég TA
    Proc Inst Mech Eng H; 2022 Aug; 236(8):1080-1092. PubMed ID: 35735142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of blood flow in several benchmark micro-channels using a two-fluid approach.
    Wu WT; Yang F; Antaki JF; Aubry N; Massoudi M
    Int J Eng Sci; 2015 Oct; 95():49-59. PubMed ID: 26240438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hemolysis prediction in bio-microfluidic applications using resolved CFD-DEM simulations.
    Porcaro C; Saeedipour M
    Comput Methods Programs Biomed; 2023 Apr; 231():107400. PubMed ID: 36774792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A homogenized two-phase computational framework for meso- and macroscale blood flow simulations.
    Karmakar A; Burgreen GW; Rydquist G; Antaki JF
    Comput Methods Programs Biomed; 2024 Apr; 247():108090. PubMed ID: 38394788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of non-Newtonian fluid rheology on an arterial bypass graft: A numerical investigation guided by constructal design.
    Dutra RF; Zinani FSF; Rocha LAO; Biserni C
    Comput Methods Programs Biomed; 2021 Apr; 201():105944. PubMed ID: 33535083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Red blood cells tracking and cell-free layer formation in a microchannel with hyperbolic contraction: A CFD model validation.
    Gracka M; Lima R; Miranda JM; Student S; Melka B; Ostrowski Z
    Comput Methods Programs Biomed; 2022 Nov; 226():107117. PubMed ID: 36122496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of the endothelial-cell glycocalyx on the motion of red blood cells through capillaries.
    Damiano ER
    Microvasc Res; 1998 Jan; 55(1):77-91. PubMed ID: 9473411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Red blood cell aggregates and their effect on non-Newtonian blood viscosity at low hematocrit in a two-fluid low shear rate microfluidic system.
    Mehri R; Mavriplis C; Fenech M
    PLoS One; 2018; 13(7):e0199911. PubMed ID: 30024907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micro-scale dynamic simulation of erythrocyte-platelet interaction in blood flow.
    AlMomani T; Udaykumar HS; Marshall JS; Chandran KB
    Ann Biomed Eng; 2008 Jun; 36(6):905-20. PubMed ID: 18330703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Internal Viscosity-Dependent Margination of Red Blood Cells in Microfluidic Channels.
    Ahmed F; Mehrabadi M; Liu Z; Barabino GA; Aidun CK
    J Biomech Eng; 2018 Jun; 140(6):. PubMed ID: 29715334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic-Based Biosensor for Blood Viscosity and Erythrocyte Sedimentation Rate Using Disposable Fluid Delivery System.
    Kang YJ
    Micromachines (Basel); 2020 Feb; 11(2):. PubMed ID: 32093288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tank-treading dynamics of red blood cells in shear flow: On the membrane viscosity rheology.
    Rezghi A; Zhang J
    Biophys J; 2022 Sep; 121(18):3393-3410. PubMed ID: 35986517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Viscoelastic properties of suspended cells measured with shear flow deformation cytometry.
    Gerum R; Mirzahossein E; Eroles M; Elsterer J; Mainka A; Bauer A; Sonntag S; Winterl A; Bartl J; Fischer L; Abuhattum S; Goswami R; Girardo S; Guck J; Schrüfer S; Ströhlein N; Nosratlo M; Herrmann H; Schultheis D; Rico F; Müller SJ; Gekle S; Fabry B
    Elife; 2022 Sep; 11():. PubMed ID: 36053000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of a microfluidic system for red blood cell aggregation investigation.
    Mehri R; Mavriplis C; Fenech M
    J Biomech Eng; 2014 Jun; 136(6):064501. PubMed ID: 24700377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of blood flow in a sudden expansion channel and a coronary artery.
    Wu WT; Aubry N; Antaki JF; Massoudi M
    J Comput Appl Math; 2020 Oct; 376():. PubMed ID: 34703076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Label-free viscosity measurement of complex fluids using reversal flow switching manipulation in a microfluidic channel.
    Jun Kang Y; Ryu J; Lee SJ
    Biomicrofluidics; 2013; 7(4):44106. PubMed ID: 24404040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micro-Viscometer for Measuring Shear-Varying Blood Viscosity over a Wide-Ranging Shear Rate.
    Kim BJ; Lee SY; Jee S; Atajanov A; Yang S
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28632151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.