BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 24791787)

  • 41. Mechanical properties of a porcine aortic valve fixed with a naturally occurring crosslinking agent.
    Sung HW; Chang Y; Chiu CT; Chen CN; Liang HC
    Biomaterials; 1999 Oct; 20(19):1759-72. PubMed ID: 10509186
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Interleukin-6-induced JAK2/STAT3 signaling pathway in endothelial cells is suppressed by hemodynamic flow.
    Ni CW; Hsieh HJ; Chao YJ; Wang DL
    Am J Physiol Cell Physiol; 2004 Sep; 287(3):C771-80. PubMed ID: 15151905
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Morphologic adaptation of arterial endothelial cells to longitudinal stretch in organ culture.
    Lee YU; Drury-Stewart D; Vito RP; Han HC
    J Biomech; 2008 Nov; 41(15):3274-7. PubMed ID: 18922530
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Aortic valve mechanics--Part I: material properties of natural porcine aortic valves.
    Missirlis YF; Chong M
    J Bioeng; 1978 Jun; 2(3-4):287-300. PubMed ID: 711721
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A Shearing-Stretching Device That Can Apply Physiological Fluid Shear Stress and Cyclic Stretch Concurrently to Endothelial Cells.
    Meza D; Abejar L; Rubenstein DA; Yin W
    J Biomech Eng; 2016 Mar; 138(3):4032550. PubMed ID: 26810848
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Natural preload of aortic valve leaflet components during glutaraldehyde fixation: effects on tissue mechanics.
    Vesely I; Lozon A
    J Biomech; 1993 Feb; 26(2):121-31. PubMed ID: 8429055
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biaxial strain analysis of the porcine aortic valve.
    Lo D; Vesely I
    Ann Thorac Surg; 1995 Aug; 60(2 Suppl):S374-8. PubMed ID: 7646191
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Calcific nodule morphogenesis by heart valve interstitial cells is strain dependent.
    Fisher CI; Chen J; Merryman WD
    Biomech Model Mechanobiol; 2013 Jan; 12(1):5-17. PubMed ID: 22307683
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Recellularization of a novel off-the-shelf valve following xenogenic implantation into the right ventricular outflow tract.
    Hennessy RS; Go JL; Hennessy RR; Tefft BJ; Jana S; Stoyles NJ; Al-Hijji MA; Thaden JJ; Pislaru SV; Simari RD; Stulak JM; Young MD; Lerman A
    PLoS One; 2017; 12(8):e0181614. PubMed ID: 28763463
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Valve Endothelial Cells - Not Just Any Old Endothelial Cells.
    Mongkoldhumrongkul N; Yacoub MH; Chester AH
    Curr Vasc Pharmacol; 2016; 14(2):146-54. PubMed ID: 26638797
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The pulmonary valve. Is it mechanically suitable for use as an aortic valve replacement?
    David H; Boughner DR; Vesely I; Gerosa G
    ASAIO J; 1994; 40(2):206-12. PubMed ID: 8003760
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A hyperelastic constitutive law for aortic valve tissue.
    May-Newman K; Lam C; Yin FC
    J Biomech Eng; 2009 Aug; 131(8):081009. PubMed ID: 19604021
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Collagen synthesis by mesenchymal stem cells and aortic valve interstitial cells in response to mechanical stretch.
    Ku CH; Johnson PH; Batten P; Sarathchandra P; Chambers RC; Taylor PM; Yacoub MH; Chester AH
    Cardiovasc Res; 2006 Aug; 71(3):548-56. PubMed ID: 16740254
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Aortic valve sclerosis in mice deficient in endothelial nitric oxide synthase.
    El Accaoui RN; Gould ST; Hajj GP; Chu Y; Davis MK; Kraft DC; Lund DD; Brooks RM; Doshi H; Zimmerman KA; Kutschke W; Anseth KS; Heistad DD; Weiss RM
    Am J Physiol Heart Circ Physiol; 2014 May; 306(9):H1302-13. PubMed ID: 24610917
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Microdevice array-based identification of distinct mechanobiological response profiles in layer-specific valve interstitial cells.
    Moraes C; Likhitpanichkul M; Lam CJ; Beca BM; Sun Y; Simmons CA
    Integr Biol (Camb); 2013 Apr; 5(4):673-80. PubMed ID: 23403640
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A microfluidic cardiac flow profile generator for studying the effect of shear stress on valvular endothelial cells.
    Lee J; Estlack Z; Somaweera H; Wang X; Lacerda CMR; Kim J
    Lab Chip; 2018 Sep; 18(19):2946-2954. PubMed ID: 30123895
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The effect of noisy flow on endothelial cell mechanotransduction: a computational study.
    Mazzag B; Barakat AI
    Ann Biomed Eng; 2011 Feb; 39(2):911-21. PubMed ID: 20963495
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The mechanical properties of porcine aortic valve tissues.
    Sauren AA; van Hout MC; van Steenhoven AA; Veldpaus FE; Janssen JD
    J Biomech; 1983; 16(5):327-37. PubMed ID: 6885834
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The Roles of Matrix Stiffness and ß-Catenin Signaling in Endothelial-to-Mesenchymal Transition of Aortic Valve Endothelial Cells.
    Zhong A; Mirzaei Z; Simmons CA
    Cardiovasc Eng Technol; 2018 Jun; 9(2):158-167. PubMed ID: 29761409
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The role of elastin in aortic valve mechanics.
    Vesely I
    J Biomech; 1998 Feb; 31(2):115-23. PubMed ID: 9593204
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.