These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 24792228)

  • 1. Disease invasion on community networks with environmental pathogen movement.
    Tien JH; Shuai Z; Eisenberg MC; van den Driessche P
    J Math Biol; 2015 Apr; 70(5):1065-92. PubMed ID: 24792228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SIS and SIR Epidemic Models Under Virtual Dispersal.
    Bichara D; Kang Y; Castillo-Chavez C; Horan R; Perrings C
    Bull Math Biol; 2015 Nov; 77(11):2004-34. PubMed ID: 26489419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An age-structured vector-borne disease model with horizontal transmission in the host.
    Wang X; Chen Y
    Math Biosci Eng; 2018 Oct; 15(5):1099-1116. PubMed ID: 30380301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model for disease dynamics of a waterborne pathogen on a random network.
    Li M; Ma J; van den Driessche P
    J Math Biol; 2015 Oct; 71(4):961-77. PubMed ID: 25326654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics and asymptotic profiles of endemic equilibrium for SIS epidemic patch models.
    Li H; Peng R
    J Math Biol; 2019 Sep; 79(4):1279-1317. PubMed ID: 31256205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exact Equations for SIR Epidemics on Tree Graphs.
    Sharkey KJ; Kiss IZ; Wilkinson RR; Simon PL
    Bull Math Biol; 2015 Apr; 77(4):614-45. PubMed ID: 24347252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The basic reproduction number and the probability of extinction for a dynamic epidemic model.
    Neal P
    Math Biosci; 2012 Mar; 236(1):31-5. PubMed ID: 22269870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An immuno-epidemiological model with threshold delay: a study of the effects of multiple exposures to a pathogen.
    Qesmi R; Heffernan JM; Wu J
    J Math Biol; 2015 Jan; 70(1-2):343-66. PubMed ID: 24577729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Host movement, transmission hot spots, and vector-borne disease dynamics on spatial networks.
    Saucedo O; Tien JH
    Infect Dis Model; 2022 Dec; 7(4):742-760. PubMed ID: 36439402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SIR dynamics in random networks with communities.
    Li J; Wang J; Jin Z
    J Math Biol; 2018 Oct; 77(4):1117-1151. PubMed ID: 29752517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of network clustering and assortativity on epidemic behaviour.
    Badham J; Stocker R
    Theor Popul Biol; 2010 Feb; 77(1):71-5. PubMed ID: 19948179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Basic reproduction number of SEIRS model on regular lattice.
    Sato K
    Math Biosci Eng; 2019 Jul; 16(6):6708-6727. PubMed ID: 31698584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The SEIRS model for infectious disease dynamics.
    Bjørnstad ON; Shea K; Krzywinski M; Altman N
    Nat Methods; 2020 Jun; 17(6):557-558. PubMed ID: 32499633
    [No Abstract]   [Full Text] [Related]  

  • 14. Global stability for epidemic models on multiplex networks.
    Huang YJ; Juang J; Liang YH; Wang HY
    J Math Biol; 2018 May; 76(6):1339-1356. PubMed ID: 28884277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A graph-theoretic method for the basic reproduction number in continuous time epidemiological models.
    de-Camino-Beck T; Lewis MA; van den Driessche P
    J Math Biol; 2009 Oct; 59(4):503-16. PubMed ID: 19048254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The distribution of the time taken for an epidemic to spread between two communities.
    Yan AWC; Black AJ; McCaw JM; Rebuli N; Ross JV; Swan AJ; Hickson RI
    Math Biosci; 2018 Sep; 303():139-147. PubMed ID: 30089576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control Strategies in Multigroup Models: The Case of the Star Network Topology.
    Saldaña F; Barradas I
    Bull Math Biol; 2018 Nov; 80(11):2978-3001. PubMed ID: 30242634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The basic reproduction number obtained from Jacobian and next generation matrices - A case study of dengue transmission modelling.
    Yang HM
    Biosystems; 2014 Dec; 126():52-75. PubMed ID: 25305542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A periodic disease transmission model with asymptomatic carriage and latency periods.
    Al-Darabsah I; Yuan Y
    J Math Biol; 2018 Aug; 77(2):343-376. PubMed ID: 29274002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple transmission pathways and disease dynamics in a waterborne pathogen model.
    Tien JH; Earn DJ
    Bull Math Biol; 2010 Aug; 72(6):1506-33. PubMed ID: 20143271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.