These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 24792321)
1. Canonical and new generation anticancer drugs also target energy metabolism. Rodríguez-Enríquez S; Gallardo-Pérez JC; Hernández-Reséndiz I; Marín-Hernández A; Pacheco-Velázquez SC; López-Ramírez SY; Rumjanek FD; Moreno-Sánchez R Arch Toxicol; 2014 Jul; 88(7):1327-50. PubMed ID: 24792321 [TBL] [Abstract][Full Text] [Related]
2. Opportunities in discovery and delivery of anticancer drugs targeting mitochondria and cancer cell metabolism. Pathania D; Millard M; Neamati N Adv Drug Deliv Rev; 2009 Nov; 61(14):1250-75. PubMed ID: 19716393 [TBL] [Abstract][Full Text] [Related]
3. Effects of sorafenib on energy metabolism in breast cancer cells: role of AMPK-mTORC1 signaling. Fumarola C; Caffarra C; La Monica S; Galetti M; Alfieri RR; Cavazzoni A; Galvani E; Generali D; Petronini PG; Bonelli MA Breast Cancer Res Treat; 2013 Aug; 141(1):67-78. PubMed ID: 23963659 [TBL] [Abstract][Full Text] [Related]
4. Targeting tumor glycolysis by a mitotropic agent. Ganapathy-Kanniappan S Expert Opin Ther Targets; 2016; 20(1):1-5. PubMed ID: 26420565 [TBL] [Abstract][Full Text] [Related]
5. The bioenergetics of cancer: is glycolysis the main ATP supplier in all tumor cells? Moreno-Sánchez R; Rodríguez-Enríquez S; Saavedra E; Marín-Hernández A; Gallardo-Pérez JC Biofactors; 2009; 35(2):209-25. PubMed ID: 19449450 [TBL] [Abstract][Full Text] [Related]
6. Mitocans: mitochondrial targeted anti-cancer drugs as improved therapies and related patent documents. Ralph SJ; Low P; Dong L; Lawen A; Neuzil J Recent Pat Anticancer Drug Discov; 2006 Nov; 1(3):327-46. PubMed ID: 18221044 [TBL] [Abstract][Full Text] [Related]
7. Targeting of cancer energy metabolism. Rodríguez-Enríquez S; Marín-Hernández A; Gallardo-Pérez JC; Carreño-Fuentes L; Moreno-Sánchez R Mol Nutr Food Res; 2009 Jan; 53(1):29-48. PubMed ID: 19123180 [TBL] [Abstract][Full Text] [Related]
8. Mitochondria: 3-bromopyruvate vs. mitochondria? A small molecule that attacks tumors by targeting their bioenergetic diversity. Galina A Int J Biochem Cell Biol; 2014 Sep; 54():266-71. PubMed ID: 24842108 [TBL] [Abstract][Full Text] [Related]
9. Glycolysis inhibition as a cancer treatment and its role in an anti-tumour immune response. Gill KS; Fernandes P; O'Donovan TR; McKenna SL; Doddakula KK; Power DG; Soden DM; Forde PF Biochim Biophys Acta; 2016 Aug; 1866(1):87-105. PubMed ID: 27373814 [TBL] [Abstract][Full Text] [Related]
10. Restoration of mitochondria function as a target for cancer therapy. Bhat TA; Kumar S; Chaudhary AK; Yadav N; Chandra D Drug Discov Today; 2015 May; 20(5):635-43. PubMed ID: 25766095 [TBL] [Abstract][Full Text] [Related]
11. The NADH-fumarate reductase system, a novel mitochondrial energy metabolism, is a new target for anticancer therapy in tumor microenvironments. Tomitsuka E; Kita K; Esumi H Ann N Y Acad Sci; 2010 Jul; 1201():44-9. PubMed ID: 20649538 [TBL] [Abstract][Full Text] [Related]
12. Molecular Pathways: Targeting Cellular Energy Metabolism in Cancer via Inhibition of SLC2A1 and LDHA. Ooi AT; Gomperts BN Clin Cancer Res; 2015 Jun; 21(11):2440-4. PubMed ID: 25838393 [TBL] [Abstract][Full Text] [Related]
13. Phosphatidylinositol-3-kinase as a putative target for anticancer action of clotrimazole. Furtado CM; Marcondes MC; Carvalho RS; Sola-Penna M; Zancan P Int J Biochem Cell Biol; 2015 May; 62():132-41. PubMed ID: 25794423 [TBL] [Abstract][Full Text] [Related]
14. Effects and specificity of anticancer agents on the respiration and energy metabolism of tumor cells. Gosálvez M; García-Cañero R; Blanco M; Gurucharri-Lloyd C Cancer Treat Rep; 1976 Jan; 60(1):1-8. PubMed ID: 1000513 [TBL] [Abstract][Full Text] [Related]
15. Emerging approaches to target tumor metabolism. Ross SJ; Critchlow SE Curr Opin Pharmacol; 2014 Aug; 17():22-9. PubMed ID: 25048629 [TBL] [Abstract][Full Text] [Related]
16. Casiopeina II-gly and bromo-pyruvate inhibition of tumor hexokinase, glycolysis, and oxidative phosphorylation. Marín-Hernández A; Gallardo-Pérez JC; López-Ramírez SY; García-García JD; Rodríguez-Zavala JS; Ruiz-Ramírez L; Gracia-Mora I; Zentella-Dehesa A; Sosa-Garrocho M; Macías-Silva M; Moreno-Sánchez R; Rodríguez-Enríquez S Arch Toxicol; 2012 May; 86(5):753-66. PubMed ID: 22349057 [TBL] [Abstract][Full Text] [Related]
17. Energy metabolism in tumor cells. Moreno-Sánchez R; Rodríguez-Enríquez S; Marín-Hernández A; Saavedra E FEBS J; 2007 Mar; 274(6):1393-418. PubMed ID: 17302740 [TBL] [Abstract][Full Text] [Related]
18. Control of cellular proliferation by modulation of oxidative phosphorylation in human and rodent fast-growing tumor cells. Rodríguez-Enríquez S; Vital-González PA; Flores-Rodríguez FL; Marín-Hernández A; Ruiz-Azuara L; Moreno-Sánchez R Toxicol Appl Pharmacol; 2006 Sep; 215(2):208-17. PubMed ID: 16580038 [TBL] [Abstract][Full Text] [Related]
19. Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Xu RH; Pelicano H; Zhou Y; Carew JS; Feng L; Bhalla KN; Keating MJ; Huang P Cancer Res; 2005 Jan; 65(2):613-21. PubMed ID: 15695406 [TBL] [Abstract][Full Text] [Related]
20. Deregulation of glycolysis in cancer: glyceraldehyde-3-phosphate dehydrogenase as a therapeutic target. Krasnov GS; Dmitriev AA; Snezhkina AV; Kudryavtseva AV Expert Opin Ther Targets; 2013 Jun; 17(6):681-93. PubMed ID: 23445303 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]