These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 24792543)

  • 1. Analysis of supercooling activities of surfactants.
    Kuwabara C; Terauchi R; Tochigi H; Takaoka H; Arakawa K; Fujikawa S
    Cryobiology; 2014 Aug; 69(1):10-6. PubMed ID: 24792543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Freezing activities of flavonoids in solutions containing different ice nucleators.
    Kuwabara C; Wang D; Kasuga J; Fukushi Y; Arakawa K; Koyama T; Inada T; Fujikawa S
    Cryobiology; 2012 Jun; 64(3):279-85. PubMed ID: 22406212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Change of supercooling capability in solutions containing different kinds of ice nucleators by flavonol glycosides from deep supercooling xylem parenchyma cells in trees.
    Kuwabara C; Kasuga J; Wang D; Fukushi Y; Arakawa K; Koyama T; Inada T; Fujikawa S
    Cryobiology; 2011 Dec; 63(3):157-63. PubMed ID: 21906586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of supercooling activity of tannin-related polyphenols.
    Kuwabara C; Wang D; Endoh K; Fukushi Y; Arakawa K; Fujikawa S
    Cryobiology; 2013 Aug; 67(1):40-9. PubMed ID: 23644016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anti-ice nucleating activity of polyphenol compounds against silver iodide.
    Koyama T; Inada T; Kuwabara C; Arakawa K; Fujikawa S
    Cryobiology; 2014 Oct; 69(2):223-8. PubMed ID: 25086201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anti-Ice Nucleating Activity of Surfactants against Silver Iodide in Water-in-Oil Emulsions.
    Inada T; Koyama T; Tomita H; Fuse T; Kuwabara C; Arakawa K; Fujikawa S
    J Phys Chem B; 2017 Jul; 121(27):6580-6587. PubMed ID: 28617608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anti-ice nucleation activity in xylem extracts from trees that contain deep supercooling xylem parenchyma cells.
    Kasuga J; Mizuno K; Arakawa K; Fujikawa S
    Cryobiology; 2007 Dec; 55(3):305-14. PubMed ID: 17936742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supercooling-Promoting (Anti-ice Nucleation) Substances.
    Fujikawa S; Kuwabara C; Kasuga J; Arakawa K
    Adv Exp Med Biol; 2018; 1081():289-320. PubMed ID: 30288716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inactivation of ice nucleating activity of silver iodide by antifreeze proteins and synthetic polymers.
    Inada T; Koyama T; Goto F; Seto T
    J Phys Chem B; 2012 May; 116(18):5364-71. PubMed ID: 22506879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterogeneous ice nucleation in aqueous solutions: the role of water activity.
    Zobrist B; Marcolli C; Peter T; Koop T
    J Phys Chem A; 2008 May; 112(17):3965-75. PubMed ID: 18363389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep supercooling xylem parenchyma cells of katsura tree (Cercidiphyllum japonicum) contain flavonol glycosides exhibiting high anti-ice nucleation activity.
    Kasuga J; Hashidoko Y; Nishioka A; Yoshiba M; Arakawa K; Fujikawa S
    Plant Cell Environ; 2008 Sep; 31(9):1335-48. PubMed ID: 18518920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zero-sized effect of nano-particles and inverse homogeneous nucleation. Principles of freezing and antifreeze.
    Liu XY; Du N
    J Biol Chem; 2004 Feb; 279(7):6124-31. PubMed ID: 14602714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitivity of cationic surfactant templates to specific anions in liquid interface crystallization.
    Sanstead PJ; Florio N; Giusto K; Morris C; Lee S
    J Colloid Interface Sci; 2012 Jun; 376(1):152-9. PubMed ID: 22450054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of bacterial ice nucleators by fish antifreeze glycoproteins.
    Parody-Morreale A; Murphy KP; Di Cera E; Fall R; DeVries AL; Gill SJ
    Nature; 1988 Jun; 333(6175):782-3. PubMed ID: 3386720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of solute on the nucleation and propagation of ice.
    Charoenrein S; Goddard M; Reid DS
    Adv Exp Med Biol; 1991; 302():191-8. PubMed ID: 1746327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remarkable antiagglomeration effect of a yeast biosurfactant, diacylmannosylerythritol, on ice-water slurry for cold thermal storage.
    Kitamoto D; Yanagishita H; Endo A; Nakaiwa M; Nakane T; Akiya T
    Biotechnol Prog; 2001; 17(2):362-5. PubMed ID: 11312716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic control of heterogeneous ice nucleation with nanophase magnetite: Biophysical and agricultural implications.
    Kobayashi A; Horikawa M; Kirschvink JL; Golash HN
    Proc Natl Acad Sci U S A; 2018 May; 115(21):5383-5388. PubMed ID: 29735681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gut colonization by an ice nucleation active bacterium, Erwinia (Pantoea) ananas reduces the cold hardiness of mulberry pyralid larvae.
    Watanabe K; Sato M
    Cryobiology; 1999 Jun; 38(4):281-9. PubMed ID: 10413571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Note: Heterogeneous ice nucleation on silver-iodide-like surfaces.
    Fraux G; Doye JP
    J Chem Phys; 2014 Dec; 141(21):216101. PubMed ID: 25481172
    [No Abstract]   [Full Text] [Related]  

  • 20. The inhibition of ice nucleators by insect antifreeze proteins is enhanced by glycerol and citrate.
    Duman JG
    J Comp Physiol B; 2002 Feb; 172(2):163-8. PubMed ID: 11916110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.