BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 24792651)

  • 41. Two-view digital breast tomosynthesis screening with synthetically reconstructed projection images: comparison with digital breast tomosynthesis with full-field digital mammographic images.
    Skaane P; Bandos AI; Eben EB; Jebsen IN; Krager M; Haakenaasen U; Ekseth U; Izadi M; Hofvind S; Gullien R
    Radiology; 2014 Jun; 271(3):655-63. PubMed ID: 24484063
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Addition of tomosynthesis to conventional digital mammography: effect on image interpretation time of screening examinations.
    Dang PA; Freer PE; Humphrey KL; Halpern EF; Rafferty EA
    Radiology; 2014 Jan; 270(1):49-56. PubMed ID: 24354377
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Clinical experience of photon counting breast tomosynthesis: comparison with traditional mammography.
    Svane G; Azavedo E; Lindman K; Urech M; Nilsson J; Weber N; Lindqvist L; Ullberg C
    Acta Radiol; 2011 Mar; 52(2):134-42. PubMed ID: 21498340
    [TBL] [Abstract][Full Text] [Related]  

  • 44. VOLUMETRIC LOCALISATION OF DENSE BREAST TISSUE USING BREAST TOMOSYNTHESIS DATA.
    Dustler M; Petersson H; Timberg P
    Radiat Prot Dosimetry; 2016 Jun; 169(1-4):392-7. PubMed ID: 26922782
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Digital breast tomosynthesis: a pilot observer study.
    Good WF; Abrams GS; Catullo VJ; Chough DM; Ganott MA; Hakim CM; Gur D
    AJR Am J Roentgenol; 2008 Apr; 190(4):865-9. PubMed ID: 18356430
    [TBL] [Abstract][Full Text] [Related]  

  • 46. GPU acceleration of a model-based iterative method for Digital Breast Tomosynthesis.
    Cavicchioli R; Hu JC; Loli Piccolomini E; Morotti E; Zanni L
    Sci Rep; 2020 Jan; 10(1):43. PubMed ID: 31913333
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A novel pre-processing technique for improving image quality in digital breast tomosynthesis.
    Kim H; Lee T; Hong J; Sabir S; Lee JR; Choi YW; Kim HH; Chae EY; Cho S
    Med Phys; 2017 Feb; 44(2):417-425. PubMed ID: 28032909
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Digital tomosynthesis: a new future for breast imaging?
    Alakhras M; Bourne R; Rickard M; Ng KH; Pietrzyk M; Brennan PC
    Clin Radiol; 2013 May; 68(5):e225-36. PubMed ID: 23465326
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evaluation of the X-ray digital linear tomosynthesis reconstruction processing method for metal artifact reduction.
    Gomi T; Hirano H; Umeda T
    Comput Med Imaging Graph; 2009 Jun; 33(4):267-74. PubMed ID: 19237263
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparison of tomosynthesis methods used with digital mammography.
    Suryanarayanan S; Karellas A; Vedantham S; Glick SJ; D'Orsi CJ; Baker SP; Webber RL
    Acad Radiol; 2000 Dec; 7(12):1085-97. PubMed ID: 11131053
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Digital tomosynthesis aided by low-resolution exact computed tomography.
    Zeng K; Yu H; Zhao S; Fajardo LL; Ruth C; Jing Z; Wang G
    J Comput Assist Tomogr; 2007; 31(6):976-83. PubMed ID: 18043366
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Digital breast tomosynthesis versus full-field digital mammography: comparison of the accuracy of lesion measurement and characterization using specimens.
    Seo N; Kim HH; Shin HJ; Cha JH; Kim H; Moon JH; Gong G; Ahn SH; Son BH
    Acta Radiol; 2014 Jul; 55(6):661-7. PubMed ID: 24005560
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cone-beam volume CT breast imaging: feasibility study.
    Chen B; Ning R
    Med Phys; 2002 May; 29(5):755-70. PubMed ID: 12033572
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Image artifacts in digital breast tomosynthesis: investigation of the effects of system geometry and reconstruction parameters using a linear system approach.
    Hu YH; Zhao B; Zhao W
    Med Phys; 2008 Dec; 35(12):5242-52. PubMed ID: 19175083
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Oblique reconstructions in tomosynthesis. II. Super-resolution.
    Acciavatti RJ; Maidment AD
    Med Phys; 2013 Nov; 40(11):111912. PubMed ID: 24320445
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Digital mammography: novel applications.
    Rafferty EA
    Radiol Clin North Am; 2007 Sep; 45(5):831-43, vii. PubMed ID: 17888772
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The effect of a limited number of projections and reconstruction algorithms on the image quality of megavoltage digital tomosynthesis.
    Sarkar V; Shi C; Rassiah-Szegedi P; Diaz A; Eng T; Papanikolaou N
    J Appl Clin Med Phys; 2009 May; 10(3):155-172. PubMed ID: 19692978
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Can compression be reduced for breast tomosynthesis? Monte carlo study on mass and microcalcification conspicuity in tomosynthesis.
    Saunders RS; Samei E; Lo JY; Baker JA
    Radiology; 2009 Jun; 251(3):673-82. PubMed ID: 19474373
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Tomographic mammography using a limited number of low-dose cone-beam projection images.
    Wu T; Stewart A; Stanton M; McCauley T; Phillips W; Kopans DB; Moore RH; Eberhard JW; Opsahl-Ong B; Niklason L; Williams MB
    Med Phys; 2003 Mar; 30(3):365-80. PubMed ID: 12674237
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Use of digital breast tomosynthesis with mammography for breast cancer screening or diagnosis.
    ; ;
    Technol Eval Cent Assess Program Exec Summ; 2014 Jan; 28(6):1-6. PubMed ID: 24730082
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.