These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 24792698)
1. Preparation of sulfonated graphene/polypyrrole solid-phase microextraction coating by in situ electrochemical polymerization for analysis of trace terpenes. Zhang C; Zhang Z; Li G J Chromatogr A; 2014 Jun; 1346():8-15. PubMed ID: 24792698 [TBL] [Abstract][Full Text] [Related]
2. Preparation of polypyrrole composite solid-phase microextraction fiber coatings by sol-gel technique for the trace analysis of polar biological volatile organic compounds. Zhang Z; Zhu L; Ma Y; Huang Y; Li G Analyst; 2013 Feb; 138(4):1156-66. PubMed ID: 23282483 [TBL] [Abstract][Full Text] [Related]
3. Electrochemical preparation of polyaniline-polypyrrole solid-phase microextraction coating and its application in the GC determination of several esters. Zhao S; Wu M; Zhao F; Zeng B Talanta; 2013 Dec; 117():146-51. PubMed ID: 24209323 [TBL] [Abstract][Full Text] [Related]
4. A novel polyaniline/polypyrrole/graphene oxide fiber for the determination of volatile organic compounds in headspace gas of lung cell lines. Li J; Xu H Talanta; 2017 May; 167():623-629. PubMed ID: 28340770 [TBL] [Abstract][Full Text] [Related]
5. Electropolymerized multiwalled carbon nanotubes/polypyrrole fiber for solid-phase microextraction and its applications in the determination of pyrethroids. Chen L; Chen W; Ma C; Du D; Chen X Talanta; 2011 Mar; 84(1):104-8. PubMed ID: 21315905 [TBL] [Abstract][Full Text] [Related]
6. A platinized stainless steel fiber with in-situ coated polyaniline/polypyrrole/graphene oxide nanocomposite sorbent for headspace solid-phase microextraction of aliphatic aldehydes in rice samples. Ghiasvand A; Nasirian A; Koonani S; Nouriasl K Biomed Chromatogr; 2017 Dec; 31(12):. PubMed ID: 28618092 [TBL] [Abstract][Full Text] [Related]
7. [Preparation of porous boron nitride-doped polypyrrole-2,3,3-trimethylindole solid-phase microextraction coating for polycyclic aromatic hydrocarbon detection]. DU J; Sun PC; Zhang ML; Lian ZT; Yuan FG; Wang G Se Pu; 2023 Sep; 41(9):789-798. PubMed ID: 37712543 [TBL] [Abstract][Full Text] [Related]
8. Dodecylsulfate-doped polypyrrole film prepared by electrochemical fiber coating technique for headspace solid-phase microextraction of polycyclic aromatic hydrocarbons. Mohammadi A; Yamini Y; Alizadeh N J Chromatogr A; 2005 Jan; 1063(1-2):1-8. PubMed ID: 15700451 [TBL] [Abstract][Full Text] [Related]
9. A nanocomposite prepared from a polypyrrole deep eutectic solvent and coated onto the inner surface of a steel capillary for electrochemically controlled microextraction of acidic drugs such as losartan. Asiabi H; Yamini Y; Shamsayei M; Mehraban JA Mikrochim Acta; 2018 Feb; 185(3):169. PubMed ID: 29594451 [TBL] [Abstract][Full Text] [Related]
11. Polypyrrole/sol-gel composite as a solid-phase microextraction fiber coating for the determination of organophosphorus pesticides in water and vegetable samples. Saraji M; Rezaei B; Boroujeni MK; Bidgoli AA J Chromatogr A; 2013 Mar; 1279():20-6. PubMed ID: 23357752 [TBL] [Abstract][Full Text] [Related]
12. Preparation of three-dimensional mesoporous polymer in situ polymerization solid phase microextraction fiber and its application to the determination of seven chlorophenols. Wang X; Wang H; Huang P; Ma X; Lu X; Du X J Chromatogr A; 2017 Jan; 1479():40-47. PubMed ID: 27955894 [TBL] [Abstract][Full Text] [Related]
13. Simultaneous HPLC-MS determination of 8-hydroxy-2'-deoxyguanosine, 3-hydroxyphenanthrene and 1-hydroxypyrene after online in-tube solid phase microextraction using a graphene oxide/poly(3,4-ethylenedioxythiophene)/polypyrrole composite. Chen D; Xu H Mikrochim Acta; 2019 Apr; 186(5):300. PubMed ID: 31025201 [TBL] [Abstract][Full Text] [Related]
14. Progress of solid-phase microextraction coatings and coating techniques. Jiang G; Huang M; Cai Y; Lv J; Zhao Z J Chromatogr Sci; 2006 Jul; 44(6):324-32. PubMed ID: 16884587 [TBL] [Abstract][Full Text] [Related]
15. Iron oxide/silica/polypyrrole nanocomposite sorbent for the comparison study of direct-immersion and headspace solid-phase microextraction of aldehyde biomarkers in human urine. Ghiasvand A; Heidari N; Abdolhosseini S J Pharm Biomed Anal; 2018 Sep; 159():37-44. PubMed ID: 29980017 [TBL] [Abstract][Full Text] [Related]
16. Covalent Bonding of Metal-Organic Framework-5/Graphene Oxide Hybrid Composite to Stainless Steel Fiber for Solid-Phase Microextraction of Triazole Fungicides from Fruit and Vegetable Samples. Zhang S; Yang Q; Wang W; Wang C; Wang Z J Agric Food Chem; 2016 Apr; 64(13):2792-801. PubMed ID: 26998567 [TBL] [Abstract][Full Text] [Related]
17. A novel graphene nanosheets coated stainless steel fiber for microwave assisted headspace solid phase microextraction of organochlorine pesticides in aqueous samples followed by gas chromatography with electron capture detection. Ponnusamy VK; Jen JF J Chromatogr A; 2011 Sep; 1218(39):6861-8. PubMed ID: 21872868 [TBL] [Abstract][Full Text] [Related]
18. An electrochemically enhanced solid-phase microextraction approach based on molecularly imprinted polypyrrole/multi-walled carbon nanotubes composite coating for selective extraction of fluoroquinolones in aqueous samples. Liu X; Wang X; Tan F; Zhao H; Quan X; Chen J; Li L Anal Chim Acta; 2012 May; 727():26-33. PubMed ID: 22541819 [TBL] [Abstract][Full Text] [Related]
19. Preparation of novel alumina nanowire solid-phase microextraction fiber coating for ultra-selective determination of volatile esters and alcohols from complicated food samples. Zhang Z; Ma Y; Wang Q; Chen A; Pan Z; Li G J Chromatogr A; 2013 May; 1290():27-35. PubMed ID: 23582855 [TBL] [Abstract][Full Text] [Related]
20. Fabrication of ciprofloxacin molecular imprinted polymer coating on a stainless steel wire as a selective solid-phase microextraction fiber for sensitive determination of fluoroquinolones in biological fluids and tablet formulation using HPLC-UV detection. Mirzajani R; Kardani F J Pharm Biomed Anal; 2016 Apr; 122():98-109. PubMed ID: 26852159 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]