These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 24792975)

  • 1. Towards the optimisation and adaptation of dry powder inhalers.
    Cui Y; Schmalfuß S; Zellnitz S; Sommerfeld M; Urbanetz N
    Int J Pharm; 2014 Aug; 470(1-2):120-32. PubMed ID: 24792975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential and constraints for the application of CFD combined with Lagrangian particle tracking to dry powder inhalers.
    Sommerfeld M; Cui Y; Schmalfuß S
    Eur J Pharm Sci; 2019 Feb; 128():299-324. PubMed ID: 30553814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dry powder inhaler device influence on carrier particle performance.
    Donovan MJ; Kim SH; Raman V; Smyth HD
    J Pharm Sci; 2012 Mar; 101(3):1097-107. PubMed ID: 22095397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drug-lactose binding aspects in adhesive mixtures: controlling performance in dry powder inhaler formulations by altering lactose carrier surfaces.
    Zhou QT; Morton DA
    Adv Drug Deliv Rev; 2012 Mar; 64(3):275-84. PubMed ID: 21782866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-scale modelling of powder dispersion in a carrier-based inhalation system.
    Tong Z; Kamiya H; Yu A; Chan HK; Yang R
    Pharm Res; 2015 Jun; 32(6):2086-96. PubMed ID: 25511919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deposition and fine particle production during dynamic flow in a dry powder inhaler: a CFD approach.
    Milenkovic J; Alexopoulos AH; Kiparissides C
    Int J Pharm; 2014 Jan; 461(1-2):129-36. PubMed ID: 24296048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating inter-patient variability of dispersion in dry powder inhalers using CFD-DEM simulations.
    Benque B; Khinast JG
    Eur J Pharm Sci; 2021 Jan; 156():105574. PubMed ID: 32980431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dry powders for oral inhalation free of lactose carrier particles.
    Healy AM; Amaro MI; Paluch KJ; Tajber L
    Adv Drug Deliv Rev; 2014 Aug; 75():32-52. PubMed ID: 24735676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterisation of dry powder inhaler formulations using atomic force microscopy.
    Weiss C; McLoughlin P; Cathcart H
    Int J Pharm; 2015 Oct; 494(1):393-407. PubMed ID: 26302859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupled in silico platform: Computational fluid dynamics (CFD) and physiologically-based pharmacokinetic (PBPK) modelling.
    Vulović A; Šušteršič T; Cvijić S; Ibrić S; Filipović N
    Eur J Pharm Sci; 2018 Feb; 113():171-184. PubMed ID: 29054499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational fluid dynamics (CFD) assisted performance evaluation of the Twincer™ disposable high-dose dry powder inhaler.
    de Boer AH; Hagedoorn P; Woolhouse R; Wynn E
    J Pharm Pharmacol; 2012 Sep; 64(9):1316-25. PubMed ID: 22881443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the cohesion-adhesion balance approach to colloidal probe atomic force microscopy and the measurement of Hansen partial solubility parameters by inverse gas chromatography for the prediction of dry powder inhalation performance.
    Jones MD; Buckton G
    Int J Pharm; 2016 Jul; 509(1-2):419-430. PubMed ID: 27265314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of drug morphology on aerosolisation efficiency of dry powder inhaler formulations.
    Adi H; Traini D; Chan HK; Young PM
    J Pharm Sci; 2008 Jul; 97(7):2780-8. PubMed ID: 17894369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Agglomerate behaviour of fluticasone propionate within dry powder inhaler formulations.
    Le VN; Robins E; Flament MP
    Eur J Pharm Biopharm; 2012 Apr; 80(3):596-603. PubMed ID: 22198291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Particle-based coarse-grained approach for simulating dry powder inhaler.
    Liu X; Sulaiman M; Kolehmainen J; Ozel A; Sundaresan S
    Int J Pharm; 2021 Sep; 606():120821. PubMed ID: 34171427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adhesion forces in interactive mixtures for dry powder inhalers--evaluation of a new measuring method.
    Lohrmann M; Kappl M; Butt HJ; Urbanetz NA; Lippold BC
    Eur J Pharm Biopharm; 2007 Sep; 67(2):579-86. PubMed ID: 17418548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards quantitative prediction of the performance of dry powder inhalers by multi-scale simulations and experiments.
    Nguyen D; Remmelgas J; Björn IN; van Wachem B; Thalberg K
    Int J Pharm; 2018 Aug; 547(1-2):31-43. PubMed ID: 29792988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Air classifier technology (ACT) in dry powder inhalation Part 4. Performance of air classifier technology in the Novolizer multi-dose dry powder inhaler.
    de Boer AH; Hagedoorn P; Gjaltema D; Goede J; Frijlink HW
    Int J Pharm; 2006 Mar; 310(1-2):81-9. PubMed ID: 16442246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Air permeability of powder: a potential tool for Dry Powder Inhaler formulation development.
    Le VN; Robins E; Flament MP
    Eur J Pharm Biopharm; 2010 Nov; 76(3):464-9. PubMed ID: 20854906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The development of dimple-shaped chitosan carrier for ethambutol dihydrochloride dry powder inhaler.
    Ahmad MI; Ungphaiboon S; Srichana T
    Drug Dev Ind Pharm; 2015 May; 41(5):791-800. PubMed ID: 24694185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.