These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 24793054)

  • 1. Voxel based parallel post processor for void nucleation and growth analysis of atomistic simulations of material fracture.
    Hemani H; Warrier M; Sakthivel N; Chaturvedi S
    J Mol Graph Model; 2014 May; 50():134-41. PubMed ID: 24793054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extending molecular simulation time scales: Parallel in time integrations for high-level quantum chemistry and complex force representations.
    Bylaska EJ; Weare JQ; Weare JH
    J Chem Phys; 2013 Aug; 139(7):074114. PubMed ID: 23968079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscale void nucleation and growth and crack tip stress evolution ahead of a growing crack in a single crystal.
    Xu S; Deng X
    Nanotechnology; 2008 Mar; 19(11):115705. PubMed ID: 21730565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Algorithms of GPU-enabled reactive force field (ReaxFF) molecular dynamics.
    Zheng M; Li X; Guo L
    J Mol Graph Model; 2013 Apr; 41():1-11. PubMed ID: 23454611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Symplectic molecular dynamics simulations on specially designed parallel computers.
    Borstnik U; Janezic D
    J Chem Inf Model; 2005; 45(6):1600-4. PubMed ID: 16309260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voids Development in Metals: Numerical Modelling.
    Wciślik W; Lipiec S
    Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sublattice parallel replica dynamics.
    Martínez E; Uberuaga BP; Voter AF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063308. PubMed ID: 25019913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cavitation in a metallic liquid: homogeneous nucleation and growth of nanovoids.
    Cai Y; Wu HA; Luo SN
    J Chem Phys; 2014 Jun; 140(21):214317. PubMed ID: 24908018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-scale molecular dynamics simulation of DNA: implementation and validation of the AMBER98 force field in LAMMPS.
    Grindon C; Harris S; Evans T; Novik K; Coveney P; Laughton C
    Philos Trans A Math Phys Eng Sci; 2004 Jul; 362(1820):1373-86. PubMed ID: 15306456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Onset of void coalescence during dynamic fracture of ductile metals.
    Seppälä ET; Belak J; Rudd RE
    Phys Rev Lett; 2004 Dec; 93(24):245503. PubMed ID: 15697824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multimillion atom simulations of dynamics of oxidation of an aluminum nanoparticle and nanoindentation on ceramics.
    Vashishta P; Kalia RK; Nakano A
    J Phys Chem B; 2006 Mar; 110(8):3727-33. PubMed ID: 16494430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of single-walled carbon nanotube nucleation, growth, and healing determined using QM/MD methods.
    Page AJ; Ohta Y; Irle S; Morokuma K
    Acc Chem Res; 2010 Oct; 43(10):1375-85. PubMed ID: 20954752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On localization and void coalescence as a precursor to ductile fracture.
    Tekoğlu C; Hutchinson JW; Pardoen T
    Philos Trans A Math Phys Eng Sci; 2015 Mar; 373(2038):. PubMed ID: 25713452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-situ atomic-scale observation of irradiation-induced void formation.
    Xu W; Zhang Y; Cheng G; Jian W; Millett PC; Koch CC; Mathaudhu SN; Zhu Y
    Nat Commun; 2013; 4():2288. PubMed ID: 23912894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of Preset Void and Damage Characteristics in Aluminum during Shock Compression and Release.
    Wan YT; Shao JL; Yu GZ; Guo EF; Shu H; Huang XG
    Nanomaterials (Basel); 2022 May; 12(11):. PubMed ID: 35683709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homogeneous nucleation and microstructure evolution in million-atom molecular dynamics simulation.
    Shibuta Y; Oguchi K; Takaki T; Ohno M
    Sci Rep; 2015 Aug; 5():13534. PubMed ID: 26311304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improbability of void growth in aluminum via dislocation nucleation under typical laboratory conditions.
    Nguyen LD; Warner DH
    Phys Rev Lett; 2012 Jan; 108(3):035501. PubMed ID: 22400757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A parallel computational model for GATE simulations.
    Rannou FR; Vega-Acevedo N; El Bitar Z
    Comput Methods Programs Biomed; 2013 Dec; 112(3):673-83. PubMed ID: 24070545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MDWiZ: a platform for the automated translation of molecular dynamics simulations.
    Rusu VH; Horta VA; Horta BA; Lins RD; Baron R
    J Mol Graph Model; 2014 Mar; 48():80-6. PubMed ID: 24434017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics simulation on a network of workstations using a machine-independent parallel programming language.
    Shifman MA; Windemuth A; Schulten K; Miller PL
    Proc Annu Symp Comput Appl Med Care; 1991; ():414-8. PubMed ID: 1807634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.