These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 24793067)

  • 1. Growth and metal removal potential of a Phormidium bigranulatum-dominated mat following long-term exposure to elevated levels of copper.
    Kumar D; Gaur JP
    Environ Sci Pollut Res Int; 2014 Sep; 21(17):10279-85. PubMed ID: 24793067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth, composition and metal removal potential of a Phormidium bigranulatum-dominated mat at elevated levels of cadmium.
    Kumar D; Yadav A; Gaur JP
    Aquat Toxicol; 2012 Jul; 116-117():24-33. PubMed ID: 22459410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of metal ions by Phormidium bigranulatum (cyanobacteria)-dominated mat in batch and continuous flow systems.
    Kumar D; Rai J; Gaur JP
    Bioresour Technol; 2012 Jan; 104():202-7. PubMed ID: 22119430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biofilm formation by algae as a mechanism for surviving on mine tailings.
    García-Meza JV; Barrangue C; Admiraal W
    Environ Toxicol Chem; 2005 Mar; 24(3):573-81. PubMed ID: 15779756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical reaction- and particle diffusion-based kinetic modeling of metal biosorption by a Phormidium sp.-dominated cyanobacterial mat.
    Kumar D; Gaur JP
    Bioresour Technol; 2011 Jan; 102(2):633-40. PubMed ID: 20800477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal biosorption by two cyanobacterial mats in relation to pH, biomass concentration, pretreatment and reuse.
    Kumar D; Gaur JP
    Bioresour Technol; 2011 Feb; 102(3):2529-35. PubMed ID: 21146402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomass of the Cyanobacterium Lyngbya wollei Alters Copper Algaecide Exposure and Risks to a Non-target Organism.
    Bishop WM; Willis BE; Cope WG; Richardson RJ
    Bull Environ Contam Toxicol; 2020 Feb; 104(2):228-234. PubMed ID: 31760444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phycoremediation and adsorption isotherms of cadmium and copper ions by Merismopedia tenuissima and their effect on growth and metabolism.
    Fawzy MA
    Environ Toxicol Pharmacol; 2016 Sep; 46():116-121. PubMed ID: 27458699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zn(II) and Cu(II) removal by Nostoc muscorum: a cyanobacterium isolated from a coal mining pit in Chiehruphi, Meghalaya, India.
    Goswami S; Diengdoh OL; Syiem MB; Pakshirajan K; Kiran MG
    Can J Microbiol; 2015 Mar; 61(3):209-15. PubMed ID: 25670258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of various isotherm models, and metal sorption potential of cyanobacterial mats in single and multi-metal systems.
    Kumar D; Pandey LK; Gaur JP
    Colloids Surf B Biointerfaces; 2010 Dec; 81(2):476-85. PubMed ID: 20724120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth, photosynthesis and removal responses of the cyanobacteria Chroococcus sp. to malathion and malaoxon.
    Martínez-Aguilar K; Pérez-Legaspi IA; Ramírez-Fuentes E; Trujillo-Tapia MN; Alfredo Ortega-Clemente L
    J Environ Sci Health B; 2018; 53(12):771-776. PubMed ID: 30199345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of chronic copper exposure on fluvial systems: linking structural and physiological changes of fluvial biofilms with the in-stream copper retention.
    Serra A; Guasch H
    Sci Total Environ; 2009 Sep; 407(19):5274-82. PubMed ID: 19646733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of the growth and biochemical composition of 20 species of cyanobacteria cultured in cylindrical photobioreactors.
    Baracho DH; Lombardi AT
    Microb Cell Fact; 2023 Feb; 22(1):36. PubMed ID: 36823519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Entrapped Sediments as a Source of Phosphorus in Epilithic Cyanobacterial Proliferations in Low Nutrient Rivers.
    Wood SA; Depree C; Brown L; McAllister T; Hawes I
    PLoS One; 2015; 10(10):e0141063. PubMed ID: 26479491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Copper-Based Aquatic Algaecide Adsorption and Accumulation Kinetics: Influence of Exposure Concentration and Duration for Controlling the Cyanobacterium Lyngbya wollei.
    Bishop WM; Lynch CL; Willis BE; Cope WG
    Bull Environ Contam Toxicol; 2017 Sep; 99(3):365-371. PubMed ID: 28681162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phormidium autumnale growth and anatoxin-a production under iron and copper stress.
    Harland FM; Wood SA; Moltchanova E; Williamson WM; Gaw S
    Toxins (Basel); 2013 Dec; 5(12):2504-21. PubMed ID: 24351714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Higher biomolecules yield in phytoplankton under copper exposure.
    Silva JC; Echeveste P; Lombardi AT
    Ecotoxicol Environ Saf; 2018 Oct; 161():57-63. PubMed ID: 29859408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of metal-binding bioflocculants produced by the cyanobacterial component of mixed microbial mats.
    Bender J; Rodriguez-Eaton S; Ekanemesang UM; Phillips P
    Appl Environ Microbiol; 1994 Jul; 60(7):2311-5. PubMed ID: 8074512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strategies of response to copper, cadmium, and lead by a blue-green and a green alga.
    Laube VM; McKenzie CN; Kushner DJ
    Can J Microbiol; 1980 Nov; 26(11):1300-11. PubMed ID: 6783279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tolerance of Oocystis nephrocytioides to copper: intracellular distribution and extracellular complexation of copper.
    Soldo D; Hari R; Sigg L; Behra R
    Aquat Toxicol; 2005 Mar; 71(4):307-17. PubMed ID: 15710479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.