These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 24793067)
21. Tolerance of Oocystis nephrocytioides to copper: intracellular distribution and extracellular complexation of copper. Soldo D; Hari R; Sigg L; Behra R Aquat Toxicol; 2005 Mar; 71(4):307-17. PubMed ID: 15710479 [TBL] [Abstract][Full Text] [Related]
22. Citric acid assisted phytoremediation of copper by Brassica napus L. Zaheer IE; Ali S; Rizwan M; Farid M; Shakoor MB; Gill RA; Najeeb U; Iqbal N; Ahmad R Ecotoxicol Environ Saf; 2015 Oct; 120():310-7. PubMed ID: 26099461 [TBL] [Abstract][Full Text] [Related]
23. Growth and photosynthetic responses to copper in wild grapevine. Cambrollé J; García JL; Ocete R; Figueroa ME; Cantos M Chemosphere; 2013 Sep; 93(2):294-301. PubMed ID: 23746388 [TBL] [Abstract][Full Text] [Related]
24. Copper phytoremediation potential of Calandula officinalis L. and the role of antioxidant enzymes in metal tolerance. Goswami S; Das S Ecotoxicol Environ Saf; 2016 Apr; 126():211-218. PubMed ID: 26773830 [TBL] [Abstract][Full Text] [Related]
25. Tolerance and accumulation of copper in the salt-marsh shrub Halimione portulacoides. Cambrollé J; Mancilla-Leytón JM; Muñoz-Vallés S; Luque T; Figueroa ME Mar Pollut Bull; 2012 Apr; 64(4):721-8. PubMed ID: 22364950 [TBL] [Abstract][Full Text] [Related]
26. Ecophysiological tolerance of duckweeds exposed to copper. Kanoun-Boulé M; Vicente JA; Nabais C; Prasad MN; Freitas H Aquat Toxicol; 2009 Jan; 91(1):1-9. PubMed ID: 19027182 [TBL] [Abstract][Full Text] [Related]
27. Physiological responses of three mono-species phototrophic biofilms exposed to copper and zinc. Loustau E; Ferriol J; Koteiche S; Gerlin L; Leflaive J; Moulin F; Girbal-Neuhauser E; Rols JL Environ Sci Pollut Res Int; 2019 Dec; 26(34):35107-35120. PubMed ID: 31679142 [TBL] [Abstract][Full Text] [Related]
28. Alterations in cell pigmentation, protein expression, and photosynthetic capacity of the cyanobacterium Oscillatoria tenuis grown under low iron conditions. Trick CG; Wilhelm SW; Brown CM Can J Microbiol; 1995 Dec; 41(12):1117-23. PubMed ID: 8542553 [TBL] [Abstract][Full Text] [Related]
29. Oxidative stress and toxicology of Cu Gallo M; Morse D; Hollnagel HC; Barros MP Aquat Toxicol; 2020 May; 222():105450. PubMed ID: 32106005 [TBL] [Abstract][Full Text] [Related]
30. Effect of copper on the photochemical efficiency, growth, and chlorophyll a biomass of natural phytoplankton assemblages. Pérez P; Estévez-Blanco P; Beiras R; Fernández E Environ Toxicol Chem; 2006 Jan; 25(1):137-43. PubMed ID: 16494234 [TBL] [Abstract][Full Text] [Related]
31. Long-term acclimation of Pseudokirchneriella subcapitata (Korshikov) Hindak to different copper concentrations: changes in tolerance and physiology. Bossuyt BT; Janssen CR Aquat Toxicol; 2004 May; 68(1):61-74. PubMed ID: 15110470 [TBL] [Abstract][Full Text] [Related]
32. UV-B induced differential effect on growth and nitrogen metabolism in two cyanobacteria under copper toxicity. Singh VP; Srivastava PK; Prasad SM Cell Mol Biol (Noisy-le-grand); 2012 Dec; 58(1):85-95. PubMed ID: 23273196 [TBL] [Abstract][Full Text] [Related]
33. Interactive effects of single, binary and trinary trace metals (lead, zinc and copper) on the physiological responses of Kandelia obovata seedlings. Shen X; Li R; Chai M; Cheng S; Niu Z; Qiu GY Environ Geochem Health; 2019 Feb; 41(1):135-148. PubMed ID: 29987496 [TBL] [Abstract][Full Text] [Related]
34. Effect of Citric Acid on Growth, Ecophysiology, Chloroplast Ultrastructure, and Phytoremediation Potential of Jute ( Parveen A; Saleem MH; Kamran M; Haider MZ; Chen JT; Malik Z; Rana MS; Hassan A; Hur G; Javed MT; Azeem M Biomolecules; 2020 Apr; 10(4):. PubMed ID: 32290389 [TBL] [Abstract][Full Text] [Related]
35. Limnothrix sp. KO05: A newly characterized cyanobacterial biosorbent for cadmium removal: the enzymatic and non-enzymatic antioxidant reactions to cadmium toxicity. Haghighi O; Shahryari S; Ebadi M; Modiri S; Zahiri HS; Maleki H; Noghabi KA Environ Toxicol Pharmacol; 2017 Apr; 51():142-155. PubMed ID: 28343753 [TBL] [Abstract][Full Text] [Related]
36. Phosphorus and metal removal combined with lipid production by the green microalga Desmodesmus sp.: An integrated approach. Rugnini L; Costa G; Congestri R; Antonaroli S; Sanità di Toppi L; Bruno L Plant Physiol Biochem; 2018 Apr; 125():45-51. PubMed ID: 29413630 [TBL] [Abstract][Full Text] [Related]
37. Photosynthetic behaviors in response to intertidal zone and algal mat density in Ulva lactuca (Chlorophyta) along the coast of Nan'ao Island, Shantou, China. Jiang H; Gong J; Lou W; Zou D Environ Sci Pollut Res Int; 2019 May; 26(13):13346-13353. PubMed ID: 30903473 [TBL] [Abstract][Full Text] [Related]
38. Effects of Cu on the content of chlorophylls and secondary metabolites in the Cu-hyperaccumulator lichen Stereocaulon japonicum. Nakajima H; Hara K; Yamamoto Y; Itoh K Ecotoxicol Environ Saf; 2015 Mar; 113():477-82. PubMed ID: 25562176 [TBL] [Abstract][Full Text] [Related]
39. Morpho-physiological traits, gaseous exchange attributes, and phytoremediation potential of jute (Corchorus capsularis L.) grown in different concentrations of copper-contaminated soil. Saleem MH; Fahad S; Khan SU; Ahmar S; Ullah Khan MH; Rehman M; Maqbool Z; Liu L Ecotoxicol Environ Saf; 2020 Feb; 189():109915. PubMed ID: 31722799 [TBL] [Abstract][Full Text] [Related]