BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 24793117)

  • 1. Effects of the intensity of masking noise on ear canal recorded low-frequency cochlear microphonic waveforms in normal hearing subjects.
    Zhang M
    Hear Res; 2014 Jul; 313():9-17. PubMed ID: 24793117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using a concha electrode to measure response patterns based on the amplitudes of cochlear microphonic waveforms across acoustic frequencies in normal-hearing subjects.
    Zhang M
    Ear Hear; 2015 Jan; 36(1):53-60. PubMed ID: 25083598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-frequency hearing impairment assessed with cochlear microphonics.
    Zhang M
    Acta Otolaryngol; 2012 Sep; 132(9):967-73. PubMed ID: 22667466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Response pattern based on the amplitude of ear canal recorded cochlear microphonic waveforms across acoustic frequencies in normal hearing subjects.
    Zhang M
    Trends Amplif; 2012 Jun; 16(2):117-26. PubMed ID: 22696071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effect of stimulus rise time and high-pass masking on early auditory evoked potentials].
    Bunke D; von Specht H; Mühler R; Pethe J; Kevanishvili Z
    Laryngorhinootologie; 1998 Apr; 77(4):185-90. PubMed ID: 9592750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Stimulus Intensity on Low-Frequency Toneburst Cochlear Microphonic Waveforms.
    Zhang M
    Audiol Res; 2013 Jan; 3(1):e3. PubMed ID: 26557341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Audibility, speech perception and processing of temporal cues in ribbon synaptic disorders due to OTOF mutations.
    Santarelli R; del Castillo I; Cama E; Scimemi P; Starr A
    Hear Res; 2015 Dec; 330(Pt B):200-12. PubMed ID: 26188103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using concha electrodes to measure cochlear microphonic waveforms and auditory brainstem responses.
    Zhang M
    Trends Amplif; 2010 Dec; 14(4):211-7. PubMed ID: 21131635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Place-specific derived cochlear microphonics from human ears.
    Ponton CW; Don M; Eggermont JJ
    Scand Audiol; 1992; 21(3):131-41. PubMed ID: 1439498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cochlear distribution of frequency-following response initiation. A high-pass masking noise study.
    Yamada O; Kodera K; Hink RF; Suzuki JI
    Audiology; 1979; 18(5):381-7. PubMed ID: 496720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristics of cochlear microphonics in infants and young children with auditory neuropathy.
    Shi W; Ji F; Lan L; Liang SC; Ding HN; Wang H; Li N; Li Q; Li XQ; Wang QJ
    Acta Otolaryngol; 2012 Feb; 132(2):188-96. PubMed ID: 22103337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noise-induced changes in cochlear compression in the rat as indexed by forward masking of the auditory brainstem response.
    Bielefeld EC; Hoglund EM; Feth LL
    Hear Res; 2012 Dec; 294(1-2):64-72. PubMed ID: 23123219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reliability of cochlear microphonics in clinical electrocochleography.
    Kumagami H; Miyazaki M
    ORL J Otorhinolaryngol Relat Spec; 1987; 49(2):93-8. PubMed ID: 3601376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cochlear initiation sites of the frequency following potential.
    McDermott JC
    Scand Audiol; 1983; 12(2):97-102. PubMed ID: 6612218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of contralateral acoustic stimulation on cochlear tuning measured using stimulus frequency and distortion product OAEs.
    Boothalingam S; Lineton B
    Int J Audiol; 2012 Dec; 51(12):892-9. PubMed ID: 22934932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the cochlear microphonic to a low-frequency tone embedded in filtered noise.
    Chertoff ME; Earl BR; Diaz FJ; Sorensen JL
    J Acoust Soc Am; 2012 Nov; 132(5):3351-62. PubMed ID: 23145616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Swept-tone transient-evoked otoacoustic emissions.
    Bennett CL; Özdamar Ö
    J Acoust Soc Am; 2010 Oct; 128(4):1833-44. PubMed ID: 20968356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase-dependent audiometry with low-frequency masking revisited.
    Rahne T; Rasinski C; Neumann K
    J Neurosci Methods; 2010 May; 188(2):302-4. PubMed ID: 20171987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time and frequency metrics related to auditory masking of a 10 kHz tone in bottlenose dolphins (Tursiops truncatus).
    Branstetter BK; Trickey JS; Aihara H; Finneran JJ; Liberman TR
    J Acoust Soc Am; 2013 Dec; 134(6):4556. PubMed ID: 25669265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distortion product emissions in humans. I. Basic properties in normally hearing subjects.
    Lonsbury-Martin BL; Harris FP; Stagner BB; Hawkins MD; Martin GK
    Ann Otol Rhinol Laryngol Suppl; 1990 May; 147():3-14. PubMed ID: 2110797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.