These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
328 related articles for article (PubMed ID: 24793174)
1. Atomic force microscopy in biofilm study. Chatterjee S; Biswas N; Datta A; Dey R; Maiti P Microscopy (Oxf); 2014 Aug; 63(4):269-78. PubMed ID: 24793174 [TBL] [Abstract][Full Text] [Related]
2. In vitro production of biofilm in a flow cell system in a strain of Pseudomonas aeruginosa and Staphylococcus aureus and determination of efficiency of ciprofloxacin against them. Gupta S; Agarwal S; Sahoo DR; Muralidharan S Indian J Pathol Microbiol; 2011; 54(3):569-71. PubMed ID: 21934223 [TBL] [Abstract][Full Text] [Related]
3. Characterisation and in vitro activities of surface attached dihydropyrrol-2-ones against Gram-negative and Gram-positive bacteria. Ho KK; Cole N; Chen R; Willcox MD; Rice SA; Kumar N Biofouling; 2010 Nov; 26(8):913-21. PubMed ID: 21038151 [TBL] [Abstract][Full Text] [Related]
4. Distribution and Inhibition of Liposomes on Staphylococcus aureus and Pseudomonas aeruginosa Biofilm. Dong D; Thomas N; Thierry B; Vreugde S; Prestidge CA; Wormald PJ PLoS One; 2015; 10(6):e0131806. PubMed ID: 26125555 [TBL] [Abstract][Full Text] [Related]
5. Effects of substrates on biofilm formation observed by atomic force microscopy. Oh YJ; Lee NR; Jo W; Jung WK; Lim JS Ultramicroscopy; 2009 Jul; 109(8):874-80. PubMed ID: 19394143 [TBL] [Abstract][Full Text] [Related]
6. Acceleration of the formation of biofilms on contact lens surfaces in the presence of neutrophil-derived cellular debris is conserved across multiple genera. Patel NB; Hinojosa JA; Zhu M; Robertson DM Mol Vis; 2018; 24():94-104. PubMed ID: 29422767 [TBL] [Abstract][Full Text] [Related]
7. Use of MALDI-TOF mass spectrometry to analyze the molecular profile of Pseudomonas aeruginosa biofilms grown on glass and plastic surfaces. Pereira FD; Bonatto CC; Lopes CA; Pereira AL; Silva LP Microb Pathog; 2015 Sep; 86():32-7. PubMed ID: 26162295 [TBL] [Abstract][Full Text] [Related]
9. Effect of sub-inhibitory antibacterial stress on bacterial surface properties and biofilm formation. Kumar A; Ting YP Colloids Surf B Biointerfaces; 2013 Nov; 111():747-54. PubMed ID: 23934235 [TBL] [Abstract][Full Text] [Related]
10. [Influence of Chlorhexidine and Prontosan on Dual Species and Monospecies Biofilms Formed by Staphylococcus aureus and Pseudomonas aeruginosa]. Kuznetsova MV; Encheva YA; Samartsev VA Antibiot Khimioter; 2015; 60(11-12):15-22. PubMed ID: 27141642 [TBL] [Abstract][Full Text] [Related]
11. Biofilm-forming capacity of Staphylococcus epidermidis, Staphylococcus aureus, and Pseudomonas aeruginosa from ocular infections. Hou W; Sun X; Wang Z; Zhang Y Invest Ophthalmol Vis Sci; 2012 Aug; 53(9):5624-31. PubMed ID: 22736609 [TBL] [Abstract][Full Text] [Related]
12. Nanoscale investigation on Pseudomonas aeruginosa biofilm formed on porous silicon using atomic force microscopy. Kannan A; Karumanchi SL; Krishna V; Thiruvengadam K; Ramalingam S; Gautam P Scanning; 2014; 36(5):551-3. PubMed ID: 25042006 [TBL] [Abstract][Full Text] [Related]
13. Molybdenum Disulfide Surfaces to Reduce Amin M; Rowley-Neale S; Shalamanova L; Lynch S; Wilson-Nieuwenhuis JT; El Mohtadi M; Banks CE; Whitehead KA ACS Appl Mater Interfaces; 2020 May; 12(18):21057-21069. PubMed ID: 32289218 [TBL] [Abstract][Full Text] [Related]
14. Incorporation of Farnesol Significantly Increases the Efficacy of Liposomal Ciprofloxacin against Pseudomonas aeruginosa Biofilms in Vitro. Bandara HM; Herpin MJ; Kolacny D; Harb A; Romanovicz D; Smyth HD Mol Pharm; 2016 Aug; 13(8):2760-70. PubMed ID: 27383205 [TBL] [Abstract][Full Text] [Related]
15. Chelator-induced dispersal and killing of Pseudomonas aeruginosa cells in a biofilm. Banin E; Brady KM; Greenberg EP Appl Environ Microbiol; 2006 Mar; 72(3):2064-9. PubMed ID: 16517655 [TBL] [Abstract][Full Text] [Related]
16. Presence of Pseudomonas aeruginosa influences biofilm formation and surface protein expression of Staphylococcus aureus. Kumar A; Ting YP Environ Microbiol; 2015 Nov; 17(11):4459-68. PubMed ID: 25925222 [TBL] [Abstract][Full Text] [Related]
17. Anti-biofilm activity of A22 ((S-3,4-dichlorobenzyl) isothiourea hydrochloride) against Pseudomonas aeruginosa: Influence on biofilm formation, motility and bioadhesion. Bonez PC; Rossi GG; Bandeira JR; Ramos AP; Mizdal CR; Agertt VA; Dalla Nora ESS; de Souza ME; Dos Santos Alves CF; Dos Santos FS; Gündel A; de Almeida Vaucher R; Santos RCV; de Campos MMA Microb Pathog; 2017 Oct; 111():6-13. PubMed ID: 28804018 [TBL] [Abstract][Full Text] [Related]
18. [Investigation of the surface properties of Staphylococcus epidermidis strains isolated from biomaterials]. Sudağidan M; Erdem I; Cavuşoğlu C; Ciftçloğlu M Mikrobiyol Bul; 2010 Jan; 44(1):93-103. PubMed ID: 20455404 [TBL] [Abstract][Full Text] [Related]
19. Biofilm susceptibility to metal toxicity. Harrison JJ; Ceri H; Stremick CA; Turner RJ Environ Microbiol; 2004 Dec; 6(12):1220-7. PubMed ID: 15560820 [TBL] [Abstract][Full Text] [Related]
20. Disassembling bacterial extracellular matrix with DNase-coated nanoparticles to enhance antibiotic delivery in biofilm infections. Baelo A; Levato R; Julián E; Crespo A; Astola J; Gavaldà J; Engel E; Mateos-Timoneda MA; Torrents E J Control Release; 2015 Jul; 209():150-8. PubMed ID: 25913364 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]