BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 24793456)

  • 1. A dual activatable photosensitizer toward targeted photodynamic therapy.
    Lau JT; Lo PC; Jiang XJ; Wang Q; Ng DK
    J Med Chem; 2014 May; 57(10):4088-97. PubMed ID: 24793456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. pH- and Thiol-Responsive BODIPY-Based Photosensitizers for Targeted Photodynamic Therapy.
    Jiang XJ; Lau JT; Wang Q; Ng DK; Lo PC
    Chemistry; 2016 Jun; 22(24):8273-81. PubMed ID: 27139139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A disulfide-linked conjugate of ferrocenyl chalcone and silicon(IV) phthalocyanine as an activatable photosensitiser.
    Lau JT; Jiang XJ; Ng DK; Lo PC
    Chem Commun (Camb); 2013 May; 49(39):4274-6. PubMed ID: 23135340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of cathepsin B-responsive fluorescent probe and photosensitizer using a ferrocenyl boron dipyrromethene dark quencher.
    Wang Q; Yu L; Wong RCH; Lo PC
    Eur J Med Chem; 2019 Oct; 179():828-836. PubMed ID: 31295715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A glutathione-responsive photosensitizer with fluorescence resonance energy transfer characteristics for imaging-guided targeting photodynamic therapy.
    Cao JJ; Zhang MS; Li XQ; Yang DC; Xu G; Liu JY
    Eur J Med Chem; 2020 May; 193():112203. PubMed ID: 32197150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH-Responsive Dimeric Zinc(II) Phthalocyanine in Mesoporous Silica Nanoparticles as an Activatable Nanophotosensitizing System for Photodynamic Therapy.
    Wong RCH; Chow SYS; Zhao S; Fong WP; Ng DKP; Lo PC
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):23487-23496. PubMed ID: 28661122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell-specific and pH-activatable rubyrin-loaded nanoparticles for highly selective near-infrared photodynamic therapy against cancer.
    Tian J; Ding L; Xu HJ; Shen Z; Ju H; Jia L; Bao L; Yu JS
    J Am Chem Soc; 2013 Dec; 135(50):18850-8. PubMed ID: 24294991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A phthalocyanine-peptide conjugate with high in vitro photodynamic activity and enhanced in vivo tumor-retention property.
    Ke MR; Yeung SL; Fong WP; Ng DK; Lo PC
    Chemistry; 2012 Apr; 18(14):4225-33. PubMed ID: 22378352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phthalocyanine-polyamine conjugates as highly efficient photosensitizers for photodynamic therapy.
    Jiang XJ; Yeung SL; Lo PC; Fong WP; Ng DK
    J Med Chem; 2011 Jan; 54(1):320-30. PubMed ID: 21138268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and photodynamic activities of silicon(IV) phthalocyanines substituted with permethylated β-cyclodextrins.
    Lau JT; Lo PC; Fong WP; Ng DK
    Chemistry; 2011 Jun; 17(27):7569-77. PubMed ID: 21598326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phthalocyanine-polyamine conjugates as pH-controlled photosensitizers for photodynamic therapy.
    Jiang XJ; Lo PC; Tsang YM; Yeung SL; Fong WP; Ng DK
    Chemistry; 2010 Apr; 16(16):4777-83. PubMed ID: 20309976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multimodality agents for tumor imaging (PET, fluorescence) and photodynamic therapy. A possible "see and treat" approach.
    Pandey SK; Gryshuk AL; Sajjad M; Zheng X; Chen Y; Abouzeid MM; Morgan J; Charamisinau I; Nabi HA; Oseroff A; Pandey RK
    J Med Chem; 2005 Oct; 48(20):6286-95. PubMed ID: 16190755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies on preparation and photodynamic mechanism of chlorin P6-13,15-N-(cyclohexyl)cycloimide (Chlorin-H) and its antitumor effect for photodynamic therapy in vitro and in vivo.
    Yan YJ; Zheng MZ; Chen ZL; Yu XH; Yang XX; Ding ZL; Xu L
    Bioorg Med Chem; 2010 Sep; 18(17):6282-91. PubMed ID: 20691601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A naphthalocyanine based near-infrared photosensitizer: synthesis and in vitro photodynamic activities.
    Luan L; Ding L; Zhang W; Shi J; Yu X; Liu W
    Bioorg Med Chem Lett; 2013 Jul; 23(13):3775-9. PubMed ID: 23721806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disulfide-Linked Dendritic Oligomeric Phthalocyanines as Glutathione-Responsive Photosensitizers for Photodynamic Therapy.
    Chow SYS; Wong RCH; Zhao S; Lo PC; Ng DKP
    Chemistry; 2018 Apr; 24(22):5779-5789. PubMed ID: 29356199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and in vitro photodynamic activities of di-alpha-substituted zinc(ii) phthalocyanine derivatives.
    Liu JY; Lo PC; Jiang XJ; Fong WP; Ng DK
    Dalton Trans; 2009 Jun; (21):4129-35. PubMed ID: 19452061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A cell-selective glutathione-responsive tris(phthalocyanine) as a smart photosensitiser for targeted photodynamic therapy.
    Chow SYS; Zhao S; Lo PC; Ng DKP
    Dalton Trans; 2017 Aug; 46(34):11223-11229. PubMed ID: 28795744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A pH-responsive fluorescence probe and photosensitiser based on a tetraamino silicon(IV) phthalocyanine.
    Jiang XJ; Lo PC; Yeung SL; Fong WP; Ng DK
    Chem Commun (Camb); 2010 May; 46(18):3188-90. PubMed ID: 20424769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FRET quenching of photosensitizer singlet oxygen generation.
    Lovell JF; Chen J; Jarvi MT; Cao WG; Allen AD; Liu Y; Tidwell TT; Wilson BC; Zheng G
    J Phys Chem B; 2009 Mar; 113(10):3203-11. PubMed ID: 19708269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Smart dual-functional warhead for folate receptor-specific activatable imaging and photodynamic therapy.
    Kim J; Tung CH; Choi Y
    Chem Commun (Camb); 2014 Sep; 50(73):10600-3. PubMed ID: 25089302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.