BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 24793456)

  • 21. Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo.
    Jang B; Park JY; Tung CH; Kim IH; Choi Y
    ACS Nano; 2011 Feb; 5(2):1086-94. PubMed ID: 21244012
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A pH-responsive fluorescent probe and photosensitiser based on a self-quenched phthalocyanine dimer.
    Ke MR; Ng DK; Lo PC
    Chem Commun (Camb); 2012 Sep; 48(72):9065-7. PubMed ID: 22864462
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydroxyphthalocyanines as potential photodynamic agents for cancer therapy.
    Hu M; Brasseur N; Yildiz SZ; van Lier JE; Leznoff CC
    J Med Chem; 1998 May; 41(11):1789-802. PubMed ID: 9599230
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis and photodynamic activities of integrin-targeting silicon(IV) phthalocyanine-cRGD conjugates.
    Zheng BY; Yang XQ; Zhao Y; Zheng QF; Ke MR; Lin T; Chen RX; Ho KKK; Kumar N; Huang JD
    Eur J Med Chem; 2018 Jul; 155():24-33. PubMed ID: 29852329
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An acid-cleavable phthalocyanine tetramer as an activatable photosensitiser for photodynamic therapy.
    Chow SY; Lo PC; Ng DK
    Dalton Trans; 2016 Aug; 45(33):13021-4. PubMed ID: 27396392
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A fluorescence-activatable tumor-reporting probe for precise photodynamic therapy.
    Li J; Wang T; Jiang F; Hong Z; Su X; Li S; Han S
    J Mater Chem B; 2021 Jul; 9(29):5829-5836. PubMed ID: 34254096
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Highly water-soluble and tumor-targeted photosensitizers for photodynamic therapy.
    Li Y; Wang J; Zhang X; Guo W; Li F; Yu M; Kong X; Wu W; Hong Z
    Org Biomol Chem; 2015 Jul; 13(28):7681-94. PubMed ID: 26082999
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A tumor-targeted activatable phthalocyanine-tetrapeptide-doxorubicin conjugate for synergistic chemo-photodynamic therapy.
    Ke MR; Chen SF; Peng XH; Zheng QF; Zheng BY; Yeh CK; Huang JD
    Eur J Med Chem; 2017 Feb; 127():200-209. PubMed ID: 28063352
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design, synthesis, and biological evaluation of folic acid targeted tetraphenylporphyrin as novel photosensitizers for selective photodynamic therapy.
    Schneider R; Schmitt F; Frochot C; Fort Y; Lourette N; Guillemin F; Müller JF; Barberi-Heyob M
    Bioorg Med Chem; 2005 Apr; 13(8):2799-808. PubMed ID: 15781391
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The synthesis and applications of 5-aminolevulinic acid (ALA) derivatives in photodynamic therapy and photodiagnosis.
    Dabrowski Z; Kwaśny M; Kamiński J; Bełdowicz M; Lewicka L; Obukowicz B; Kaliszewski M; Pirozyńska E
    Acta Pol Pharm; 2003; 60(3):219-24. PubMed ID: 14556493
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of an Azo-Based Photosensitizer Activated under Mild Hypoxia for Photodynamic Therapy.
    Piao W; Hanaoka K; Fujisawa T; Takeuchi S; Komatsu T; Ueno T; Terai T; Tahara T; Nagano T; Urano Y
    J Am Chem Soc; 2017 Oct; 139(39):13713-13719. PubMed ID: 28872304
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A tumor mRNA-triggered photodynamic molecular beacon based on oligonucleotide hairpin control of singlet oxygen production.
    Chen J; Lovell JF; Lo PC; Stefflova K; Niedre M; Wilson BC; Zheng G
    Photochem Photobiol Sci; 2008 Jul; 7(7):775-81. PubMed ID: 18597024
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure-activity relationships of mono-substituted trisulfonated porphyrazines for the photodynamic therapy (PDT) of cancer.
    Cauchon N; Ali H; Hasséssian HM; van Lier JE
    Photochem Photobiol Sci; 2010 Mar; 9(3):331-41. PubMed ID: 20221459
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photodynamic therapy: tumor targeting with adenoviral proteins.
    Allen CM; Sharman WM; La Madeleine C; Weber JM; Langlois R; Ouellet R; van Lier JE
    Photochem Photobiol; 1999 Oct; 70(4):512-23. PubMed ID: 10546549
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photosensitizer (PS)-cyanine dye (CD) conjugates: Impact of the linkers joining the PS and CD moieties and their orientation in tumor-uptake and photodynamic therapy (PDT).
    James NS; Joshi P; Ohulchanskyy TY; Chen Y; Tabaczynski W; Durrani F; Shibata M; Pandey RK
    Eur J Med Chem; 2016 Oct; 122():770-785. PubMed ID: 27543778
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Induction of tumor necrosis by delta-aminolevulinic acid and 1,10-phenanthroline photodynamic therapy.
    Rebeiz N; Arkins S; Rebeiz CA; Simon J; Zachary JF; Kelley KW
    Cancer Res; 1996 Jan; 56(2):339-44. PubMed ID: 8542589
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Water-soluble aluminium phthalocyanine-polymer conjugates for PDT: photodynamic activities and pharmacokinetics in tumour-bearing mice.
    Brasseur N; Ouellet R; La Madeleine C; van Lier JE
    Br J Cancer; 1999 Jul; 80(10):1533-41. PubMed ID: 10408394
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An integrin-targeting glutathione-activated zinc(II) phthalocyanine for dual targeted photodynamic therapy.
    Ha SYY; Wong RCH; Wong CTT; Ng DKP
    Eur J Med Chem; 2019 Jul; 174():56-65. PubMed ID: 31029944
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photodynamic activity of BAM-SiPc, an unsymmetrical bisamino silicon(IV) phthalocyanine, in tumour-bearing nude mice.
    Leung SC; Lo PC; Ng DK; Liu WK; Fung KP; Fong WP
    Br J Pharmacol; 2008 May; 154(1):4-12. PubMed ID: 18332853
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Photodynamic therapy of human squamous cell carcinoma in vitro and in xenografts in nude mice.
    Megerian CA; Zaidi SI; Sprecher RC; Setrakian S; Stepnick DW; Oleinick NL; Mukhtar H
    Laryngoscope; 1993 Sep; 103(9):967-75. PubMed ID: 8361317
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.