These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 24793518)
1. Metal dynamics and tolerance of Typha domingensis exposed to high concentrations of Cr, Ni and Zn. Mufarrege MM; Hadad HR; Di Luca GA; Maine MA Ecotoxicol Environ Saf; 2014 Jul; 105():90-6. PubMed ID: 24793518 [TBL] [Abstract][Full Text] [Related]
2. The ability of Typha domingensis to accumulate and tolerate high concentrations of Cr, Ni, and Zn. Mufarrege MM; Hadad HR; Di Luca GA; Maine MA Environ Sci Pollut Res Int; 2015 Jan; 22(1):286-92. PubMed ID: 25062549 [TBL] [Abstract][Full Text] [Related]
3. Spatial variation of heavy metals and uptake potential by Typha domingensis in a tropical reservoir in the midlands region, Zimbabwe. Dube T; Mhangwa G; Makaka C; Parirenyatwa B; Muteveri T Environ Sci Pollut Res Int; 2019 Apr; 26(10):10097-10105. PubMed ID: 30756354 [TBL] [Abstract][Full Text] [Related]
4. Comparative analysis of element concentrations and translocation in three wetland congener plants: Typha domingensis, Typha latifolia and Typha angustifolia. Bonanno G; Cirelli GL Ecotoxicol Environ Saf; 2017 Sep; 143():92-101. PubMed ID: 28525817 [TBL] [Abstract][Full Text] [Related]
5. Morphological response of Typha domingensis to an industrial effluent containing heavy metals in a constructed wetland. Hadad HR; Mufarrege MM; Pinciroli M; Di Luca GA; Maine MA Arch Environ Contam Toxicol; 2010 Apr; 58(3):666-75. PubMed ID: 20041323 [TBL] [Abstract][Full Text] [Related]
6. Phytoremediation of Cd, Cr, Cu, Mn, Fe, Ni, Pb and Zn from aqueous solution using Phragmites cummunis, Typha angustifolia and Cyperus esculentus. Chandra R; Yadav S Int J Phytoremediation; 2011 Jul; 13(6):580-91. PubMed ID: 21972504 [TBL] [Abstract][Full Text] [Related]
7. Long-term study of Cr, Ni, Zn, and P distribution in Typha domingensis growing in a constructed wetland. Hadad HR; Mufarrege MLM; Di Luca GA; Maine MA Environ Sci Pollut Res Int; 2018 Jun; 25(18):18130-18137. PubMed ID: 29691750 [TBL] [Abstract][Full Text] [Related]
8. Bioindication of soil pollution in the delta of the Don River and the coast of the Taganrog Bay with heavy metals based on anatomical, morphological and biogeochemical studies of macrophyte (Typha australis Schum. & Thonn). Minkina TM; Fedorenko GM; Nevidomskaya DG; Pol'shina TN; Fedorenko AG; Chaplygin VA; Mandzhieva SS; Sushkova SN; Hassan TM Environ Geochem Health; 2021 Apr; 43(4):1563-1581. PubMed ID: 31312968 [TBL] [Abstract][Full Text] [Related]
9. Cadmium tolerance of Typha domingensis Pers. (Typhaceae) as related to growth and leaf morphophysiology. Oliveira JPV; Pereira MP; Duarte VP; Corrêa FF; Castro EM; Pereira FJ Braz J Biol; 2018 Aug; 78(3):509-516. PubMed ID: 29995113 [TBL] [Abstract][Full Text] [Related]
10. Temporal variation of heavy metal accumulation and translocation characteristics of narrow-leaved cattail (Typha angustifolia L.). Duman F; Urey E; Koca FD Environ Sci Pollut Res Int; 2015 Nov; 22(22):17886-96. PubMed ID: 26162443 [TBL] [Abstract][Full Text] [Related]
11. Heavy metal contamination in sediments and mangroves from the coast of Red Sea: Avicennia marina as potential metal bioaccumulator. Usman AR; Alkredaa RS; Al-Wabel MI Ecotoxicol Environ Saf; 2013 Nov; 97():263-70. PubMed ID: 24011858 [TBL] [Abstract][Full Text] [Related]
12. Removal efficiency of a constructed wetland for wastewater treatment according to vegetation dominance. Maine MA; Suñe N; Hadad H; Sánchez G; Bonetto C Chemosphere; 2007 Jun; 68(6):1105-13. PubMed ID: 17346771 [TBL] [Abstract][Full Text] [Related]
13. Cr, Ni, and Zn removal from landfill leachate using vertical flow wetlands planted with Maine MA; Hadad HR; Camaño Silvestrini NE; Nocetti E; Sanchez GC; Campagnoli MA Int J Phytoremediation; 2022; 24(1):66-75. PubMed ID: 34077330 [TBL] [Abstract][Full Text] [Related]
14. Cr(III) and Cr(VI) removal in floating treatment wetlands (FTWs) using Di Luca GA; Mufarrege MLM; Hadad HR; Maine MA; Nocetti E; Montañez F; Campagnoli MA Int J Phytoremediation; 2023; 25(13):1819-1829. PubMed ID: 37035876 [TBL] [Abstract][Full Text] [Related]
15. Influence of Typha domingensis in the removal of high P concentrations from water. Di Luca GA; Maine MA; Mufarrege MM; Hadad HR; Bonetto CA Chemosphere; 2015 Nov; 138():405-11. PubMed ID: 26149856 [TBL] [Abstract][Full Text] [Related]
16. Contrasting plant-induced changes in heavy metals dynamics: Implications for phytoremediation strategies in estuarine wetlands. Ferreira AD; Queiroz HM; Boim AGF; Duckworth OW; Otero XL; Bernardino ÂF; Ferreira TO Ecotoxicol Environ Saf; 2024 Jul; 279():116416. PubMed ID: 38749195 [TBL] [Abstract][Full Text] [Related]
17. Sustainability of a constructed wetland faced with a depredation event. Maine MA; Hadad HR; Sánchez GC; Mufarrege MM; Di Luca GA; Caffaratti SE; Pedro MC J Environ Manage; 2013 Oct; 128():1-6. PubMed ID: 23694854 [TBL] [Abstract][Full Text] [Related]
18. Influence of vegetation on the removal of heavy metals and nutrients in a constructed wetland. Maine MA; Suñe N; Hadad H; Sánchez G; Bonetto C J Environ Manage; 2009 Jan; 90(1):355-63. PubMed ID: 18079048 [TBL] [Abstract][Full Text] [Related]
19. A comparison of trace metal bioaccumulation and distribution in Typha latifolia and Phragmites australis: implication for phytoremediation. Klink A Environ Sci Pollut Res Int; 2017 Feb; 24(4):3843-3852. PubMed ID: 27900625 [TBL] [Abstract][Full Text] [Related]
20. A field study on phytoremediation of dredged sediment contaminated by heavy metals and nutrients: the impacts of sediment aeration. Wu J; Yang L; Zhong F; Cheng S Environ Sci Pollut Res Int; 2014 Dec; 21(23):13452-60. PubMed ID: 25012206 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]