These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 24793587)

  • 1. Vacancy inter-layer migration in multi-layered graphene.
    Liu L; Gao J; Zhang X; Yan T; Ding F
    Nanoscale; 2014 Jun; 6(11):5729-34. PubMed ID: 24793587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffusion, coalescence, and reconstruction of vacancy defects in graphene layers.
    Lee GD; Wang CZ; Yoon E; Hwang NM; Kim DY; Ho KM
    Phys Rev Lett; 2005 Nov; 95(20):205501. PubMed ID: 16384068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vacancy diffusion and coalescence in graphene directed by defect strain fields.
    Trevethan T; Latham CD; Heggie MI; Briddon PR; Rayson MJ
    Nanoscale; 2014 Mar; 6(5):2978-86. PubMed ID: 24487384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation and healing of vacancies in graphene chemical vapor deposition (CVD) growth.
    Wang L; Zhang X; Chan HL; Yan F; Ding F
    J Am Chem Soc; 2013 Mar; 135(11):4476-82. PubMed ID: 23444843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interlayer vacancy defects in AA-stacked bilayer graphene: density functional theory predictions.
    Vuong A; Trevethan T; Latham CD; Ewels CP; Erbahar D; Briddon PR; Rayson MJ; Heggie MI
    J Phys Condens Matter; 2017 Apr; 29(15):155304. PubMed ID: 28181915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defect-induced semiconductor to metal transition in graphene monoxide.
    Woo J; Yun KH; Cho SB; Chung YC
    Phys Chem Chem Phys; 2014 Jul; 16(26):13477-82. PubMed ID: 24886723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Action-derived molecular dynamics simulations for the migration and coalescence of vacancies in graphene and carbon nanotubes.
    Lee AT; Ryu B; Lee IH; Chang KJ
    J Phys Condens Matter; 2014 Mar; 26(11):115303. PubMed ID: 24590224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical investigation of thermodynamic stability and mobility of the oxygen vacancy in ThO2-UO2 solid solutions.
    Liu B; Aidhy DS; Zhang Y; Weber WJ
    Phys Chem Chem Phys; 2014 Dec; 16(46):25461-7. PubMed ID: 25342500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tight-binding calculation studies of vacancy and adatom defects in graphene.
    Zhang W; Lu WC; Zhang HX; Ho KM; Wang CZ
    J Phys Condens Matter; 2016 Mar; 28(11):115001. PubMed ID: 26902952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anomalous stability of graphene containing defects covered by a water layer.
    Song R; Wangmo S; Xin M; Meng Y; Huai P; Wang Z; Zhang R
    Nanoscale; 2013 Aug; 5(15):6767-72. PubMed ID: 23695176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Point defects on graphene on metals.
    Ugeda MM; Fernández-Torre D; Brihuega I; Pou P; Martínez-Galera AJ; Pérez R; Gómez-Rodríguez JM
    Phys Rev Lett; 2011 Sep; 107(11):116803. PubMed ID: 22026692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Site-dependent stability and electronic structure of single vacancy point defects in hexagonal graphene nano-flakes.
    Shi H; Barnard AS; Snook IK
    Phys Chem Chem Phys; 2013 Apr; 15(14):4897-905. PubMed ID: 23420228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Missing atom as a source of carbon magnetism.
    Ugeda MM; Brihuega I; Guinea F; Gómez-Rodríguez JM
    Phys Rev Lett; 2010 Mar; 104(9):096804. PubMed ID: 20367003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-temperature scanning tunneling microscopy study of the ordering transition of an amorphous carbon layer into graphene on ruthenium(0001).
    Günther S; Dänhardt S; Ehrensperger M; Zeller P; Schmitt S; Wintterlin J
    ACS Nano; 2013 Jan; 7(1):154-64. PubMed ID: 23214506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption and reactivity of CO(2) on defective graphene sheets.
    Cabrera-Sanfelix P
    J Phys Chem A; 2009 Jan; 113(2):493-8. PubMed ID: 19128185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determining charge state of graphene vacancy by noncontact atomic force microscopy and first-principles calculations.
    Liu Y; Weinert M; Li L
    Nanotechnology; 2015 Jan; 26(3):035702. PubMed ID: 25549100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth of metalloid aluminum clusters on graphene vacancies.
    Alnemrat S; Mayo DH; DeCarlo S; Hooper JP
    J Chem Phys; 2016 Jan; 144(2):024703. PubMed ID: 26772583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First-principles study of Ni adatom migration on graphene with vacancies.
    Hernández-Vázquez EE; Munoz F; López-Moreno S; Morán-López JL
    RSC Adv; 2019 Jun; 9(33):18823-18834. PubMed ID: 35516868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diffusion mechanism of lithium ion through basal plane of layered graphene.
    Yao F; Güneş F; Ta HQ; Lee SM; Chae SJ; Sheem KY; Cojocaru CS; Xie SS; Lee YH
    J Am Chem Soc; 2012 May; 134(20):8646-54. PubMed ID: 22545779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mass transport mechanism of cu species at the metal/dielectric interfaces with a graphene barrier.
    Zhao Y; Liu Z; Sun T; Zhang L; Jie W; Wang X; Xie Y; Tsang YH; Long H; Chai Y
    ACS Nano; 2014 Dec; 8(12):12601-11. PubMed ID: 25423484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.