These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 2479373)

  • 1. Direct evidence for a role of intramitochondrial Ca2+ in the regulation of oxidative phosphorylation in the stimulated rat heart. Studies using 31P n.m.r. and ruthenium red.
    Unitt JF; McCormack JG; Reid D; MacLachlan LK; England PJ
    Biochem J; 1989 Aug; 262(1):293-301. PubMed ID: 2479373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of calcium ions in the regulation of intramitochondrial metabolism. Effects of Na+, Mg2+ and ruthenium red on the Ca2+-stimulated oxidation of oxoglutarate and on pyruvate dehydrogenase activity in intact rat heart mitochondria.
    Denton RM; McCormack JG; Edgell NJ
    Biochem J; 1980 Jul; 190(1):107-17. PubMed ID: 6160850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ruthenium Red inhibits the activation of pyruvate dehydrogenase caused by positive inotropic agents in the perfused rat heart.
    McCormack JG; England PJ
    Biochem J; 1983 Aug; 214(2):581-5. PubMed ID: 6193784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Postischaemic reperfusion injury in the isolated rat heart: effect of ruthenium red.
    Figueredo VM; Dresdner KP; Wolney AC; Keller AM
    Cardiovasc Res; 1991 Apr; 25(4):337-42. PubMed ID: 1715813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cardiac contractile function, oxygen consumption rate and cytosolic phosphates during inhibition of electron flux by amytal--a 31P-NMR study.
    Kupriyanov VV; Lakomkin VL; Korchazhkina OV; Stepanov VA; Steinschneider AYa ; Kapelko VI
    Biochim Biophys Acta; 1991 Jul; 1058(3):386-99. PubMed ID: 2065062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relation among regional O2 consumption, high-energy phosphates, and substrate uptake in porcine right ventricle.
    Schwartz GG; Greyson CR; Wisneski JA; Garcia J; Steinman S
    Am J Physiol; 1994 Feb; 266(2 Pt 2):H521-30. PubMed ID: 8141353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of substrate on mitochondrial NADH, cytosolic redox state, and phosphorylated compounds in isolated hearts.
    Scholz TD; Laughlin MR; Balaban RS; Kupriyanov VV; Heineman FW
    Am J Physiol; 1995 Jan; 268(1 Pt 2):H82-91. PubMed ID: 7840306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptation to chronic hypoxia alters cardiac metabolic response to beta stimulation: novel face of phosphocreatine overshoot phenomenon.
    Novel-Chaté V; Aussedat J; Saks VA; Rossi A
    J Mol Cell Cardiol; 1995 Aug; 27(8):1679-87. PubMed ID: 8523430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of calcium on mitochondrial NAD(P)H in paced rat ventricular myocytes.
    White RL; Wittenberg BA
    Biophys J; 1995 Dec; 69(6):2790-9. PubMed ID: 8599685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The dynamic regulation of myocardial oxidative phosphorylation: analysis of the response time of oxygen consumption.
    van Beek JH; Tian X; Zuurbier CJ; de Groot B; van Echteld CJ; Eijgelshoven MH; Hak JB
    Mol Cell Biochem; 1998 Jul; 184(1-2):321-44. PubMed ID: 9746328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ca2+ transport by mammalian mitochondria and its role in hormone action.
    Denton RM; McCormack JG
    Am J Physiol; 1985 Dec; 249(6 Pt 1):E543-54. PubMed ID: 2417490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relation between the O2 supply:demand ratio, MVO2, and adenosine formation in hearts stimulated with inotropic agents.
    Headrick JP; Willis RJ
    Can J Physiol Pharmacol; 1990 Jan; 68(1):110-8. PubMed ID: 2158384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The loading of fura-2 into mitochondria in the intact perfused rat heart and its use to estimate matrix Ca2+ under various conditions.
    Allen SP; Stone D; McCormack JG
    J Mol Cell Cardiol; 1992 Jul; 24(7):765-73. PubMed ID: 1383555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dependence of cardiac mitochondrial pyruvate dehydrogenase activity on intramitochondrial free Ca2+ concentration.
    Moreno-Sánchez R; Hansford RG
    Biochem J; 1988 Dec; 256(2):403-12. PubMed ID: 2464995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of Ca2+ ions in the regulation of intramitochondrial metabolism and energy production in rat heart.
    McCormack JG; Denton RM
    Mol Cell Biochem; 1989 Sep; 89(2):121-5. PubMed ID: 2682206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the effects of Ca2+ on the intramitochondrial Ca2+-sensitive dehydrogenases within intact rat-kidney mitochondria.
    McCormack JG; Bromidge ES; Dawes NJ
    Biochim Biophys Acta; 1988 Jul; 934(3):282-92. PubMed ID: 2840116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ruthenium red improves postischemic contractile function in isolated rat hearts.
    Grover GJ; Dzwonczyk S; Sleph PG
    J Cardiovasc Pharmacol; 1990 Nov; 16(5):783-9. PubMed ID: 1703601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of ruthenium red on rat heart subcellular calcium transport.
    Gupta MP; Dixon IM; Zhao D; Dhalla NS
    Can J Cardiol; 1989; 5(1):55-63. PubMed ID: 2465813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Na+ effects on mitochondrial respiration and oxidative phosphorylation in diabetic hearts.
    Babsky A; Doliba N; Doliba N; Savchenko A; Wehrli S; Osbakken M
    Exp Biol Med (Maywood); 2001 Jun; 226(6):543-51. PubMed ID: 11395924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Responses of contractile function to ruthenium red in rat heart.
    Gupta MP; Innes IR; Dhalla NS
    Am J Physiol; 1988 Dec; 255(6 Pt 2):H1413-20. PubMed ID: 2462366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.