These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
262 related articles for article (PubMed ID: 24793820)
1. A novel approach for fit analysis of thermal protective clothing using three-dimensional body scanning. Lu Y; Song G; Li J Appl Ergon; 2014 Nov; 45(6):1439-46. PubMed ID: 24793820 [TBL] [Abstract][Full Text] [Related]
2. Analysing performance of protective clothing upon hot liquid exposure using instrumented spray manikin. Lu Y; Song G; Li J Ann Occup Hyg; 2013 Jul; 57(6):793-804. PubMed ID: 23328808 [TBL] [Abstract][Full Text] [Related]
3. Performance study of protective clothing against hot water splashes: from bench scale test to instrumented manikin test. Lu Y; Song G; Wang F Ann Occup Hyg; 2015 Mar; 59(2):232-42. PubMed ID: 25349371 [TBL] [Abstract][Full Text] [Related]
4. An empirical analysis of thermal protective performance of fabrics used in protective clothing. Mandal S; Song G Ann Occup Hyg; 2014 Oct; 58(8):1065-77. PubMed ID: 25135076 [TBL] [Abstract][Full Text] [Related]
5. Laboratory evaluation of thermal protective clothing performance upon hot liquid splash. Gholamreza F; Song G Ann Occup Hyg; 2013 Jul; 57(6):805-22. PubMed ID: 23801030 [TBL] [Abstract][Full Text] [Related]
6. Contribution of garment fit and style to thermal comfort at the lower body. Mert E; Böhnisch S; Psikuta A; Bueno MA; Rossi RM Int J Biometeorol; 2016 Dec; 60(12):1995-2004. PubMed ID: 27757698 [TBL] [Abstract][Full Text] [Related]
7. Procedures to evaluate the efficiency of protective clothing worn by operators applying pesticide. Espanhol-Soares M; Nociti LA; Machado-Neto JG Ann Occup Hyg; 2013 Oct; 57(8):1041-53. PubMed ID: 23813887 [TBL] [Abstract][Full Text] [Related]
8. The effect of body postures on the distribution of air gap thickness and contact area. Mert E; Psikuta A; Bueno MA; Rossi RM Int J Biometeorol; 2017 Feb; 61(2):363-375. PubMed ID: 27522664 [TBL] [Abstract][Full Text] [Related]
9. The relationship between air layers and evaporative resistance of male Chinese ethnic clothing. Wang F; Peng H; Shi W Appl Ergon; 2016 Sep; 56():194-202. PubMed ID: 27184328 [TBL] [Abstract][Full Text] [Related]
11. Firefighters' protective jackets: Fit to female form and its effects on attributes relevant to thermal comfort. Nawaz N; Troynikov O J Occup Environ Hyg; 2018 Nov; 15(11):792-802. PubMed ID: 30111264 [TBL] [Abstract][Full Text] [Related]
12. Investigation of the thermal hazardous effect of protective clothing caused by stored energy discharge. He J; Lu Y; Chen Y; Li J J Hazard Mater; 2017 Sep; 338():76-84. PubMed ID: 28531661 [TBL] [Abstract][Full Text] [Related]
13. A comparative study on the effects of air gap wind and walking motion on the thermal properties of Arabian Thawbs and Chinese Cheongsams. Cui Z; Fan J; Wu Y Ergonomics; 2016 Aug; 59(8):999-1008. PubMed ID: 26653094 [TBL] [Abstract][Full Text] [Related]
14. Theoretical analysis of three methods for calculating thermal insulation of clothing from thermal manikin. Huang J Ann Occup Hyg; 2012 Jul; 56(6):728-35. PubMed ID: 22798547 [TBL] [Abstract][Full Text] [Related]
15. A test battery related to ergonomics of protective clothing. Havenith G; Heus R Appl Ergon; 2004 Jan; 35(1):3-20. PubMed ID: 14985136 [TBL] [Abstract][Full Text] [Related]
16. Characterization of Textiles Used in Chefs' Uniforms for Protection Against Thermal Hazards Encountered in the Kitchen Environment. Zhang H; McQueen RH; Batcheller JC; Ehnes BL; Paskaluk SA Ann Occup Hyg; 2015 Oct; 59(8):1058-73. PubMed ID: 25925745 [TBL] [Abstract][Full Text] [Related]
17. 3D quantification of microclimate volume in layered clothing for the prediction of clothing insulation. Lee Y; Hong K; Hong SA Appl Ergon; 2007 May; 38(3):349-55. PubMed ID: 16756938 [TBL] [Abstract][Full Text] [Related]
18. Garment size effect of thermal protective clothing on global and local evaporative cooling of walking manikin in a hot environment. Guan M; Li J Int J Biometeorol; 2020 Mar; 64(3):485-499. PubMed ID: 32016640 [TBL] [Abstract][Full Text] [Related]
19. A quasi-physical model for predicting the thermal insulation and moisture vapour resistance of clothing. Qian X; Fan J Appl Ergon; 2009 Jul; 40(4):577-90. PubMed ID: 18835476 [TBL] [Abstract][Full Text] [Related]
20. The effect of moisture content within multilayer protective clothing on protection from radiation and steam. Su Y; Li J; Song G Int J Occup Saf Ergon; 2018 Jun; 24(2):190-199. PubMed ID: 28427297 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]