BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 24793995)

  • 1. Disrupting the male germ line to find infertility and contraception targets.
    Archambeault DR; Matzuk MM
    Ann Endocrinol (Paris); 2014 May; 75(2):101-8. PubMed ID: 24793995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR/Cas9 Promotes Functional Study of Testis Specific X-Linked Gene In Vivo.
    Li M; Huang R; Jiang X; Chen Y; Zhang Z; Zhang X; Liang P; Zhan S; Cao S; Songyang Z; Huang J
    PLoS One; 2015; 10(11):e0143148. PubMed ID: 26599493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of genome-edited pluripotent stem cells and mice by CRISPR/Cas.
    Horii T; Hatada I
    Endocr J; 2016; 63(3):213-9. PubMed ID: 26743444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feasibility for a large scale mouse mutagenesis by injecting CRISPR/Cas plasmid into zygotes.
    Mashiko D; Young SA; Muto M; Kato H; Nozawa K; Ogawa M; Noda T; Kim YJ; Satouh Y; Fujihara Y; Ikawa M
    Dev Growth Differ; 2014 Jan; 56(1):122-9. PubMed ID: 24372541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Simple Protocol for Loss-of-Function Analysis in Xenopus tropicalis Founders Using the CRISPR-Cas System.
    Sakane Y; Suzuki KT; Yamamoto T
    Methods Mol Biol; 2017; 1630():189-203. PubMed ID: 28643260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Perspective on the Future of High-Throughput RNAi Screening: Will CRISPR Cut Out the Competition or Can RNAi Help Guide the Way?
    Taylor J; Woodcock S
    J Biomol Screen; 2015 Sep; 20(8):1040-51. PubMed ID: 26048892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR/Cas9-mediated genome-edited mice reveal 10 testis-enriched genes are dispensable for male fecundity.
    Park S; Shimada K; Fujihara Y; Xu Z; Shimada K; Larasati T; Pratiwi P; Matzuk RM; Devlin DJ; Yu Z; Garcia TX; Matzuk MM; Ikawa M
    Biol Reprod; 2020 Aug; 103(2):195-204. PubMed ID: 32561905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The testis-specific serine proteases PRSS44, PRSS46, and PRSS54 are dispensable for male mouse fertility†.
    Holcomb RJ; Oura S; Nozawa K; Kent K; Yu Z; Robertson MJ; Coarfa C; Matzuk MM; Ikawa M; Garcia TX
    Biol Reprod; 2020 Feb; 102(1):84-91. PubMed ID: 31403672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome engineering uncovers 54 evolutionarily conserved and testis-enriched genes that are not required for male fertility in mice.
    Miyata H; Castaneda JM; Fujihara Y; Yu Z; Archambeault DR; Isotani A; Kiyozumi D; Kriseman ML; Mashiko D; Matsumura T; Matzuk RM; Mori M; Noda T; Oji A; Okabe M; Prunskaite-Hyyrylainen R; Ramirez-Solis R; Satouh Y; Zhang Q; Ikawa M; Matzuk MM
    Proc Natl Acad Sci U S A; 2016 Jul; 113(28):7704-10. PubMed ID: 27357688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR/Cas9-based genetic screen of SCNT-reprogramming resistant genes identifies critical genes for male germ cell development in mice.
    Akter MS; Hada M; Shikata D; Watanabe G; Ogura A; Matoba S
    Sci Rep; 2021 Jul; 11(1):15438. PubMed ID: 34326397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Creation of knock out and knock in mice by CRISPR/Cas9 to validate candidate genes for human male infertility, interest, difficulties and feasibility.
    Kherraf ZE; Conne B; Amiri-Yekta A; Kent MC; Coutton C; Escoffier J; Nef S; Arnoult C; Ray PF
    Mol Cell Endocrinol; 2018 Jun; 468():70-80. PubMed ID: 29522859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR/Cas9-Mediated Rapid Generation of Multiple Mouse Lines Identified Ccdc63 as Essential for Spermiogenesis.
    Young SA; Miyata H; Satouh Y; Kato H; Nozawa K; Isotani A; Aitken RJ; Baker MA; Ikawa M
    Int J Mol Sci; 2015 Oct; 16(10):24732-50. PubMed ID: 26501274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic impact of CRISPR immunization against bacteriophages.
    Barrangou R; Coûté-Monvoisin AC; Stahl B; Chavichvily I; Damange F; Romero DA; Boyaval P; Fremaux C; Horvath P
    Biochem Soc Trans; 2013 Dec; 41(6):1383-91. PubMed ID: 24256225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR Primer Designer: Design primers for knockout and chromosome imaging CRISPR-Cas system.
    Yan M; Zhou SR; Xue HW
    J Integr Plant Biol; 2015 Jul; 57(7):613-7. PubMed ID: 25319067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Harnessing CRISPR-Cas systems for bacterial genome editing.
    Selle K; Barrangou R
    Trends Microbiol; 2015 Apr; 23(4):225-32. PubMed ID: 25698413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variation in zygotic CRISPR/Cas9 gene editing outcomes generates novel reporter and deletion alleles at the Gdf11 locus.
    Goldstein JM; Valido A; Lewandowski JP; Walker RG; Mills MJ; Messemer KA; Besseling P; Lee KH; Wattrus SJ; Cho M; Lee RT; Wagers AJ
    Sci Rep; 2019 Dec; 9(1):18613. PubMed ID: 31819086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The application of genome editing in studying hearing loss.
    Zou B; Mittal R; Grati M; Lu Z; Shu Y; Tao Y; Feng Y; Xie D; Kong W; Yang S; Chen ZY; Liu X
    Hear Res; 2015 Sep; 327():102-8. PubMed ID: 25987504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering subtle targeted mutations into the mouse genome.
    Menke DB
    Genesis; 2013 Sep; 51(9):605-18. PubMed ID: 23913666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Jackson Lab Receives New KOMP2 Grant.
    Cancer Discov; 2016 Oct; 6(10):1072. PubMed ID: 27554613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system.
    Liang Z; Zhang K; Chen K; Gao C
    J Genet Genomics; 2014 Feb; 41(2):63-8. PubMed ID: 24576457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.