These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 24794192)
1. Synergetic chemical coupling controls the uniformity of carbon nanotube microstructure growth. Bedewy M; Farmer B; Hart AJ ACS Nano; 2014 Jun; 8(6):5799-812. PubMed ID: 24794192 [TBL] [Abstract][Full Text] [Related]
2. Mechanical coupling limits the density and quality of self-organized carbon nanotube growth. Bedewy M; Hart AJ Nanoscale; 2013 Apr; 5(7):2928-37. PubMed ID: 23455411 [TBL] [Abstract][Full Text] [Related]
3. Tailoring the morphology of carbon nanotube arrays: from spinnable forests to undulating foams. Zhang Y; Zou G; Doorn SK; Htoon H; Stan L; Hawley ME; Sheehan CJ; Zhu Y; Jia Q ACS Nano; 2009 Aug; 3(8):2157-62. PubMed ID: 19640000 [TBL] [Abstract][Full Text] [Related]
4. High-yield growth of vertically aligned carbon nanotubes on a continuously moving substrate. Guzmán de Villoria R; Figueredo SL; Hart AJ; Steiner SA; Slocum AH; Wardle BL Nanotechnology; 2009 Oct; 20(40):405611. PubMed ID: 19752503 [TBL] [Abstract][Full Text] [Related]
5. Engineering vertically aligned carbon nanotube growth by decoupled thermal treatment of precursor and catalyst. Meshot ER; Plata DL; Tawfick S; Zhang Y; Verploegen EA; Hart AJ ACS Nano; 2009 Sep; 3(9):2477-86. PubMed ID: 19691287 [TBL] [Abstract][Full Text] [Related]
6. Rapid growth and flow-mediated nucleation of millimeter-scale aligned carbon nanotube structures from a thin-film catalyst. Hart AJ; Slocum AH J Phys Chem B; 2006 Apr; 110(16):8250-7. PubMed ID: 16623503 [TBL] [Abstract][Full Text] [Related]
7. Laser printing of nanoparticle toner enables digital control of micropatterned carbon nanotube growth. Polsen ES; Stevens AG; Hart AJ ACS Appl Mater Interfaces; 2013 May; 5(9):3656-62. PubMed ID: 23438258 [TBL] [Abstract][Full Text] [Related]
8. Pretreatment control of carbon nanotube array growth for gas separation: alignment and growth studied using microscopy and small-angle X-ray scattering. Yang X; Yuan L; Peterson VK; Minett AI; Zhao M; Kirby N; Mudie S; Harris AT ACS Appl Mater Interfaces; 2013 Apr; 5(8):3063-70. PubMed ID: 23517303 [TBL] [Abstract][Full Text] [Related]
9. Decoupled control of carbon nanotube forest density and diameter by continuous-feed convective assembly of catalyst particles. Polsen ES; Bedewy M; Hart AJ Small; 2013 Aug; 9(15):2564-75. PubMed ID: 23418098 [TBL] [Abstract][Full Text] [Related]
10. High-speed in situ X-ray scattering of carbon nanotube film nucleation and self-organization. Meshot ER; Verploegen E; Bedewy M; Tawfick S; Woll AR; Green KS; Hromalik M; Koerner LJ; Philipp HT; Tate MW; Gruner SM; Hart AJ ACS Nano; 2012 Jun; 6(6):5091-101. PubMed ID: 22571676 [TBL] [Abstract][Full Text] [Related]
11. Population growth dynamics of carbon nanotubes. Bedewy M; Meshot ER; Reinker MJ; Hart AJ ACS Nano; 2011 Nov; 5(11):8974-89. PubMed ID: 22023221 [TBL] [Abstract][Full Text] [Related]
12. Iridescence of patterned carbon nanotube forests on flexible substrates: from darkest materials to colorful films. Hsieh KC; Tsai TY; Wan D; Chen HL; Tai NH ACS Nano; 2010 Mar; 4(3):1327-36. PubMed ID: 20184384 [TBL] [Abstract][Full Text] [Related]
13. Predictive Synthesis of Freeform Carbon Nanotube Microarchitectures by Strain-Engineered Chemical Vapor Deposition. Park SJ; Zhao H; Kim S; De Volder M; John Hart A Small; 2016 Aug; 12(32):4393-403. PubMed ID: 27378165 [TBL] [Abstract][Full Text] [Related]
14. Synthesis of Vertical Carbon Nanotube Interconnect Structures Using CMOS-Compatible Catalysts. Ma Z; Zhou S; Zhou C; Xiao Y; Li S; Chan M Nanomaterials (Basel); 2020 Sep; 10(10):. PubMed ID: 32992981 [TBL] [Abstract][Full Text] [Related]
15. Fabrication, densification, and replica molding of 3D carbon nanotube microstructures. Copic D; Park SJ; Tawfick S; De Volder M; Hart AJ J Vis Exp; 2012 Jul; (65):. PubMed ID: 22806089 [TBL] [Abstract][Full Text] [Related]
16. Strain-engineered manufacturing of freeform carbon nanotube microstructures. De Volder M; Park S; Tawfick S; Hart AJ Nat Commun; 2014 Jul; 5():4512. PubMed ID: 25072599 [TBL] [Abstract][Full Text] [Related]
17. The fabrication of vertically aligned and periodically distributed carbon nanotube bundles and periodically porous carbon nanotube films through a combination of laser interference ablation and metal-catalyzed chemical vapor deposition. Yuan D; Lin W; Guo R; Wong CP; Das S Nanotechnology; 2012 Jun; 23(21):215303. PubMed ID: 22551592 [TBL] [Abstract][Full Text] [Related]
18. Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications. Penza M; Rossi R; Alvisi M; Serra E Nanotechnology; 2010 Mar; 21(10):105501. PubMed ID: 20154374 [TBL] [Abstract][Full Text] [Related]
19. Flow-dependent directional growth of carbon nanotube forests by chemical vapor deposition. Kim H; Kim KS; Kang J; Park YC; Chun KY; Boo JH; Kim YJ; Hong BH; Choi JB Nanotechnology; 2011 Mar; 22(9):095303. PubMed ID: 21270486 [TBL] [Abstract][Full Text] [Related]
20. Vertically aligned dense carbon nanotube growth with diameter control by block copolymer micelle catalyst templates. Liu X; Bigioni TP; Xu Y; Cassell AM; Cruden BA J Phys Chem B; 2006 Oct; 110(41):20102-6. PubMed ID: 17034181 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]