These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
86 related articles for article (PubMed ID: 24794225)
1. Development of a new nanofiber scaffold for use with stem cells in a third degree burn animal model. Steffens D; Leonardi D; Soster PR; Lersch M; Rosa A; Crestani T; Scher C; de Morais MG; Costa JA; Pranke P Burns; 2014 Dec; 40(8):1650-60. PubMed ID: 24794225 [TBL] [Abstract][Full Text] [Related]
2. A new biomaterial of nanofibers with the microalga Spirulina as scaffolds to cultivate with stem cells for use in tissue engineering. Steffens D; Lersch M; Rosa A; Scher C; Crestani T; Morais MG; Costa JA; Pranke P J Biomed Nanotechnol; 2013 Apr; 9(4):710-8. PubMed ID: 23621033 [TBL] [Abstract][Full Text] [Related]
3. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications. Li WJ; Cooper JA; Mauck RL; Tuan RS Acta Biomater; 2006 Jul; 2(4):377-85. PubMed ID: 16765878 [TBL] [Abstract][Full Text] [Related]
4. Suppression of alkali-induced oxidative injury in the cornea by mesenchymal stem cells growing on nanofiber scaffolds and transferred onto the damaged corneal surface. Cejkova J; Trosan P; Cejka C; Lencova A; Zajicova A; Javorkova E; Kubinova S; Sykova E; Holan V Exp Eye Res; 2013 Nov; 116():312-23. PubMed ID: 24145108 [TBL] [Abstract][Full Text] [Related]
6. Treatment of a burn animal model with functionalized tridimensional electrospun biomaterials. Steffens D; Mathor MB; Soster PRDL; Vergani G; Luco DP; Pranke P J Biomater Appl; 2017 Nov; 32(5):663-676. PubMed ID: 28992774 [TBL] [Abstract][Full Text] [Related]
7. Electrospun scaffolds for multiple tissues regeneration in vivo through topography dependent induction of lineage specific differentiation. Yin Z; Chen X; Song HX; Hu JJ; Tang QM; Zhu T; Shen WL; Chen JL; Liu H; Heng BC; Ouyang HW Biomaterials; 2015 Mar; 44():173-85. PubMed ID: 25617136 [TBL] [Abstract][Full Text] [Related]
8. [Studies on poly-D, L-lactide acid scaffolds modified by conjugation of bioactive peptides via ammonia plasma treatment]. Xu Z; Chen J; Yin S; Zhu Q; Li T; Zha D; Jiang X; Zhang X Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2010 Nov; 24(11):1376-85. PubMed ID: 21226366 [TBL] [Abstract][Full Text] [Related]
9. Stem cell differentiation on electrospun nanofibrous substrates for vascular tissue engineering. Jia L; Prabhakaran MP; Qin X; Ramakrishna S Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4640-50. PubMed ID: 24094171 [TBL] [Abstract][Full Text] [Related]
10. [Experimental study on repair of articular cartilage defects with homograft of marrow mesenchymal stem cells seeded onto poly-L-lactic acid/gelatin]. Wang M; Xia Y; Wang S Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Jul; 21(7):753-8. PubMed ID: 17694670 [TBL] [Abstract][Full Text] [Related]
11. The support of bone marrow stromal cell differentiation by airbrushed nanofiber scaffolds. Tutak W; Sarkar S; Lin-Gibson S; Farooque TM; Jyotsnendu G; Wang D; Kohn J; Bolikal D; Simon CG Biomaterials; 2013 Mar; 34(10):2389-98. PubMed ID: 23312903 [TBL] [Abstract][Full Text] [Related]
12. Electrospinning of highly porous scaffolds for cartilage regeneration. Thorvaldsson A; Stenhamre H; Gatenholm P; Walkenström P Biomacromolecules; 2008 Mar; 9(3):1044-9. PubMed ID: 18260633 [TBL] [Abstract][Full Text] [Related]
13. Scaffolding for challenging environments: materials selection for tissue engineered intestine. Boomer L; Liu Y; Mahler N; Johnson J; Zak K; Nelson T; Lannutti J; Besner GE J Biomed Mater Res A; 2014 Nov; 102(11):3795-802. PubMed ID: 24288210 [TBL] [Abstract][Full Text] [Related]
14. [Osteogenic effect of peptides anchored aminated tissue engineered bone for repairing femoral defect in rats]. Xu Z; Chen J; Xu W; Zhu X; Wang C; Luo H; Li G; Chen R Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 May; 27(5):520-8. PubMed ID: 23879086 [TBL] [Abstract][Full Text] [Related]
15. Scaffolds Containing Spirulina sp. LEB 18 Biomass: Development, Characterization and Evaluation of In Vitro Biodegradation. Schmatz DA; Uebel Lda S; Kuntzler SG; Dora CL; Costa JA; de Morais MG J Nanosci Nanotechnol; 2016 Jan; 16(1):1050-9. PubMed ID: 27398568 [TBL] [Abstract][Full Text] [Related]
16. The regulation of tendon stem cell differentiation by the alignment of nanofibers. Yin Z; Chen X; Chen JL; Shen WL; Hieu Nguyen TM; Gao L; Ouyang HW Biomaterials; 2010 Mar; 31(8):2163-75. PubMed ID: 19995669 [TBL] [Abstract][Full Text] [Related]
17. Novel biodegradable three-dimensional macroporous scaffold using aligned electrospun nanofibrous yarns for bone tissue engineering. Cai YZ; Zhang GR; Wang LL; Jiang YZ; Ouyang HW; Zou XH J Biomed Mater Res A; 2012 May; 100(5):1187-94. PubMed ID: 22345081 [TBL] [Abstract][Full Text] [Related]
18. Development of a biomaterial associated with mesenchymal stem cells and keratinocytes for use as a skin substitute. Steffens D; Mathor MB; Santi BT; Luco DP; Pranke P Regen Med; 2015 Nov; 10(8):975-87. PubMed ID: 26542841 [TBL] [Abstract][Full Text] [Related]
19. Development of nanofibrous scaffolds containing gum tragacanth/poly (ε-caprolactone) for application as skin scaffolds. Ranjbar-Mohammadi M; Bahrami SH Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():71-9. PubMed ID: 25579898 [TBL] [Abstract][Full Text] [Related]
20. Bi-layer collagen/microporous electrospun nanofiber scaffold improves the osteochondral regeneration. Zhang S; Chen L; Jiang Y; Cai Y; Xu G; Tong T; Zhang W; Wang L; Ji J; Shi P; Ouyang HW Acta Biomater; 2013 Jul; 9(7):7236-47. PubMed ID: 23567945 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]