These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 24794289)

  • 41. Games Used With Serious Purposes: A Systematic Review of Interventions in Patients With Cerebral Palsy.
    Lopes S; Magalhães P; Pereira A; Martins J; Magalhães C; Chaleta E; Rosário P
    Front Psychol; 2018; 9():1712. PubMed ID: 30283377
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Kinect-based upper limb rehabilitation system to assist people with cerebral palsy.
    Chang YJ; Han WY; Tsai YC
    Res Dev Disabil; 2013 Nov; 34(11):3654-9. PubMed ID: 24012594
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The efficacy of GMFM-88 and GMFM-66 to detect changes in gross motor function in children with cerebral palsy (CP): a literature review.
    Alotaibi M; Long T; Kennedy E; Bavishi S
    Disabil Rehabil; 2014; 36(8):617-27. PubMed ID: 23802141
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Neurorehabilitation of children with cerebral palsy.
    Maria Barlow K
    Handb Clin Neurol; 2008; 87():591-609. PubMed ID: 18809046
    [No Abstract]   [Full Text] [Related]  

  • 45. MaLT - Combined Motor and Language Therapy Tool for Brain Injury Patients Using Kinect.
    Wairagkar M; McCrindle R; Robson H; Meteyard L; Sperrin M; Smith A; Pugh M
    Methods Inf Med; 2017 Mar; 56(2):127-137. PubMed ID: 28220928
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Keeping up with video game technology: objective analysis of Xbox Kinect™ and PlayStation 3 Move™ for use in burn rehabilitation.
    Parry I; Carbullido C; Kawada J; Bagley A; Sen S; Greenhalgh D; Palmieri T
    Burns; 2014 Aug; 40(5):852-9. PubMed ID: 24296065
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Randomized controlled clinical trials of individualized treatment of cerebral palsy children by warm-reinforcing needling combined with Bobath rehabilitation training].
    Zhang NX; Wang XY; Liu GZ; Li YB; Zhang HY
    Zhen Ci Yan Jiu; 2014 Aug; 39(4):318-23. PubMed ID: 25219129
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The effect of training in an interactive dynamic stander on ankle dorsiflexion and gross motor function in children with cerebral palsy.
    Curtis DJ; Bencke J; Mygind B
    Dev Neurorehabil; 2014 Dec; 17(6):393-7. PubMed ID: 24865964
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Motor imagery training in hemiplegic cerebral palsy: a potentially useful therapeutic tool for rehabilitation.
    Steenbergen B; Crajé C; Nilsen DM; Gordon AM
    Dev Med Child Neurol; 2009 Sep; 51(9):690-6. PubMed ID: 19709140
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Using motion interactive games to promote physical activity and enhance motor performance in children with cerebral palsy.
    Sandlund M; Waterworth EL; Häger C
    Dev Neurorehabil; 2011; 14(1):15-21. PubMed ID: 21241174
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Virtual reality in stroke rehabilitation: a meta-analysis and implications for clinicians.
    Saposnik G; Levin M;
    Stroke; 2011 May; 42(5):1380-6. PubMed ID: 21474804
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Movement-Based VR Gameplay Therapy For A Child With Cerebral Palsy.
    Stansfield S; Dennis C; Larin H; Gallagher C
    Stud Health Technol Inform; 2015; 219():153-7. PubMed ID: 26799898
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of innovative virtual reality game and EMG biofeedback on neuromotor control in cerebral palsy.
    Yoo JW; Lee DR; Sim YJ; You JH; Kim CJ
    Biomed Mater Eng; 2014; 24(6):3613-8. PubMed ID: 25227075
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Feasibility of Pediatric Game-Based Neurorehabilitation Using Telehealth Technologies: A Case Report.
    Reifenberg G; Gabrosek G; Tanner K; Harpster K; Proffitt R; Persch A
    Am J Occup Ther; 2017; 71(3):7103190040p1-7103190040p8. PubMed ID: 28422630
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effectiveness of constraint-induced movement therapy on upper-extremity function in children with cerebral palsy: a systematic review and meta-analysis of randomized controlled trials.
    Chen YP; Pope S; Tyler D; Warren GL
    Clin Rehabil; 2014 Oct; 28(10):939-53. PubMed ID: 25125440
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Perspectives on tactile intervention for children with cerebral palsy: a framework to guide clinical reasoning and future research.
    Auld ML; Johnston LM
    Disabil Rehabil; 2018 Jul; 40(15):1849-1854. PubMed ID: 28407718
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Neurorehabilitation of Patients with Cerebral Palsy].
    Solopova IA; Moshonkina TR; Umnov VV; Vissarionov SV; Baindurashvili AG; Gerasimenko YP
    Fiziol Cheloveka; 2015; 41(4):123-31. PubMed ID: 26485797
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Use of virtual reality intervention to improve reaction time in children with cerebral palsy: A randomized controlled trial.
    Pourazar M; Mirakhori F; Hemayattalab R; Bagherzadeh F
    Dev Neurorehabil; 2018 Nov; 21(8):515-520. PubMed ID: 28933977
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Virtual reality: we are virtually there.
    Snider L; Majnemer A
    Phys Occup Ther Pediatr; 2010 Feb; 30(1):1-3. PubMed ID: 20170427
    [No Abstract]   [Full Text] [Related]  

  • 60. Serious games for upper limb rehabilitation: a systematic review.
    Proença JP; Quaresma C; Vieira P
    Disabil Rehabil Assist Technol; 2018 Jan; 13(1):95-100. PubMed ID: 28359181
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.