These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 24794289)

  • 61. Impaired visually guided weight-shifting ability in children with cerebral palsy.
    Ballaz L; Robert M; Parent A; Prince F; Lemay M
    Res Dev Disabil; 2014 Sep; 35(9):1970-7. PubMed ID: 24858794
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Interactive augmented reality using Scratch 2.0 to improve physical activities for children with developmental disabilities.
    Lin CY; Chang YM
    Res Dev Disabil; 2015 Feb; 37():1-8. PubMed ID: 25460214
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Feasibility of using a large amplitude movement therapy to improve ambulatory function in children with cerebral palsy.
    Hickman R; Dufek JS; Lee SP; Blahovec A; Kuiken A; Riggins H; McClellan JR
    Physiother Theory Pract; 2015; 31(6):382-9. PubMed ID: 26154826
    [TBL] [Abstract][Full Text] [Related]  

  • 64. [Rehabilitation of children with infantile cerebral palsy].
    Cytowicz W; Lodziński A
    Wiad Lek; 1973 Sep; 26(17):1601-5. PubMed ID: 4755709
    [No Abstract]   [Full Text] [Related]  

  • 65. Relationship between perceived competence and performance during real and virtual motor tasks by children with developmental coordination disorder.
    Engel-Yeger B; Sido R; Mimouni-Bloch A; Weiss PL
    Disabil Rehabil Assist Technol; 2017 Oct; 12(7):752-757. PubMed ID: 28098503
    [TBL] [Abstract][Full Text] [Related]  

  • 66. [Scalp acupuncture for epileptiform discharges of children with cerebral palsy].
    Li S; Liu Z; Zhao W; Jin B; Li N; Luo G
    Zhongguo Zhen Jiu; 2017 Mar; 37(3):265-268. PubMed ID: 29231432
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Randomized trial of observation and execution of upper extremity actions versus action alone in children with unilateral cerebral palsy.
    Sgandurra G; Ferrari A; Cossu G; Guzzetta A; Fogassi L; Cioni G
    Neurorehabil Neural Repair; 2013; 27(9):808-15. PubMed ID: 23886886
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Virtual reality as a therapeutic modality for children with cerebral palsy.
    Snider L; Majnemer A; Darsaklis V
    Dev Neurorehabil; 2010; 13(2):120-8. PubMed ID: 20222773
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Wii™-habilitation of upper extremity function in children with cerebral palsy. An explorative study.
    Winkels DG; Kottink AI; Temmink RA; Nijlant JM; Buurke JH
    Dev Neurorehabil; 2013; 16(1):44-51. PubMed ID: 23030054
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Effect of feedback from a socially interactive humanoid robot on reaching kinematics in children with and without cerebral palsy: A pilot study.
    Chen Y; Garcia-Vergara S; Howard AM
    Dev Neurorehabil; 2018 Nov; 21(8):490-496. PubMed ID: 28816558
    [TBL] [Abstract][Full Text] [Related]  

  • 71. [The importance of hydrokinetotherapy in rehabilitation activities for locomotor deficiencies in cerebral palsy].
    Ban R
    Viata Med Rev Inf Prof Stiint Cadrelor Medii Sanit; 1984 May; 32(5):105-6. PubMed ID: 6438878
    [No Abstract]   [Full Text] [Related]  

  • 72. Effectiveness of robot-assisted gait training in children with cerebral palsy: a bicenter, pragmatic, randomized, cross-over trial (PeLoGAIT).
    Ammann-Reiffer C; Bastiaenen CH; Meyer-Heim AD; van Hedel HJ
    BMC Pediatr; 2017 Mar; 17(1):64. PubMed ID: 28253887
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Effects of interventions with therapeutic suits (clothing) on impairments and functional limitations of children with cerebral palsy: a systematic review.
    Almeida KM; Fonseca ST; Figueiredo PRP; Aquino AA; Mancini MC
    Braz J Phys Ther; 2017; 21(5):307-320. PubMed ID: 28712784
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Video games and rehabilitation: using design principles to enhance engagement in physical therapy.
    Lohse K; Shirzad N; Verster A; Hodges N; Van der Loos HF
    J Neurol Phys Ther; 2013 Dec; 37(4):166-75. PubMed ID: 24232363
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Multisite trial on efficacy of constraint-induced movement therapy in children with hemiplegia: study design and methodology.
    Facchin P; Rosa-Rizzotto M; Turconi AC; Pagliano E; Fazzi E; Stortini M; Fedrizzi E;
    Am J Phys Med Rehabil; 2009 Mar; 88(3):216-30. PubMed ID: 19847131
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Using health games for rehabilitation of patients with infantile cerebral palsy.
    Lee WC; Reyes-Fernández MC; Posada-Gómez R; Juárez-Martínez U; Martínez-Sibaja A; Alor-Hernández G
    J Phys Ther Sci; 2016 Aug; 28(8):2293-8. PubMed ID: 27630417
    [TBL] [Abstract][Full Text] [Related]  

  • 77. From movement to action: a new framework for cerebral palsy.
    Ferrari A
    Eur J Phys Rehabil Med; 2019 Dec; 55(6):852-861. PubMed ID: 31556512
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Proposal of an Extended Taxonomy of Serious Games for Health Rehabilitation.
    Rego PA; Moreira PM; Reis LP
    Games Health J; 2018 Oct; 7(5):302-309. PubMed ID: 29957075
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The Use of Serious Gaming to Improve Sensorimotor Function and Motivation in People with Cerebral Palsy: A Systematic Review.
    Crebbin K; Grisbrook T; Elliott C; Thornton A
    Games Health J; 2023 Jun; 12(3):169-197. PubMed ID: 36161972
    [TBL] [Abstract][Full Text] [Related]  

  • 80. User Experience Evaluations in Rehabilitation Video Games for Children: A Systematic Mapping of the Literature.
    Rico-Olarte C; López DM; Blobel B; Kepplinger S
    Stud Health Technol Inform; 2017; 243():13-17. PubMed ID: 28883160
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.