BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 24794390)

  • 21. Remediation of toxic metal contaminated soil by washing with biodegradable aminopolycarboxylate chelants.
    Begum ZA; Rahman IM; Tate Y; Sawai H; Maki T; Hasegawa H
    Chemosphere; 2012 Jun; 87(10):1161-70. PubMed ID: 22391046
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Potential of vetiver (vetiveria zizanioides (L.) Nash) for phytoremediation of petroleum hydrocarbon-contaminated soils in Venezuela.
    Brandt R; Merkl N; Schultze-Kraft R; Infante C; Broll G
    Int J Phytoremediation; 2006; 8(4):273-84. PubMed ID: 17305302
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spatial distribution of organochlorine pesticides (OCPs) and effect of soil characters: a case study of a pesticide producing factory.
    Zhao C; Xie H; Zhang J; Xu J; Liang S
    Chemosphere; 2013 Mar; 90(9):2381-7. PubMed ID: 23159071
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fate of brominated flame retardants and organochlorine pesticides in urban soil: volatility and degradation.
    Wong F; Kurt-Karakus P; Bidleman TF
    Environ Sci Technol; 2012 Mar; 46(5):2668-74. PubMed ID: 22243402
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Is vetiver grass of interest for the remediation of Cu and Cd to protect marketing gardens in Burkina Faso?
    Ondo Zue Abaga N; Dousset S; Mbengue S; Munier-Lamy C
    Chemosphere; 2014 Oct; 113():42-7. PubMed ID: 25065788
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biosurfactant technology for remediation of cadmium and lead contaminated soils.
    Juwarkar AA; Nair A; Dubey KV; Singh SK; Devotta S
    Chemosphere; 2007 Aug; 68(10):1996-2002. PubMed ID: 17399765
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The sequential use of washing and an electrochemical reduction process for the remediation of lead-contaminated soils.
    Demir A; Köleli N
    Environ Technol; 2013; 34(5-8):799-805. PubMed ID: 23837331
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Potential of Vetiver grass for the phytoremediation of a real multi-contaminated soil, assisted by electrokinetic.
    Siyar R; Doulati Ardejani F; Farahbakhsh M; Norouzi P; Yavarzadeh M; Maghsoudy S
    Chemosphere; 2020 May; 246():125802. PubMed ID: 31927377
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distribution and uptake pathways of organochlorine pesticides in greenhouse and conventional vegetables.
    Zhang A; Luo W; Sun J; Xiao H; Liu W
    Sci Total Environ; 2015 Feb; 505():1142-7. PubMed ID: 25466687
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In situ bioremediation of organochlorine-pesticide-contaminated microcosm soil and evaluation by gene probe.
    Qureshi A; Mohan M; Kanade GS; Kapley A; Purohit HJ
    Pest Manag Sci; 2009 Jul; 65(7):798-804. PubMed ID: 19360715
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metal (Cu, Cd and Zn) removal and stabilization during multiple soil washing by saponin.
    Gusiatin ZM; Klimiuk E
    Chemosphere; 2012 Jan; 86(4):383-91. PubMed ID: 22099538
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Residuals of organochlorine pesticides and heavy metals in soil and water of planting base and Liriope muscari].
    Wu Y; Zhang L; Huang Q; Xiang Z; Guo Q
    Zhongguo Zhong Yao Za Zhi; 2009 Jun; 34(11):1351-4. PubMed ID: 19771860
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ecological rehabilitation and phytoremediation with four grasses in oil shale mined land.
    Xia HP
    Chemosphere; 2004 Jan; 54(3):345-53. PubMed ID: 14575747
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Greenhouse study on the phytoremediation potential of vetiver grass, Chrysopogon zizanioides L., in arsenic-contaminated soils.
    Datta R; Quispe MA; Sarkar D
    Bull Environ Contam Toxicol; 2011 Jan; 86(1):124-8. PubMed ID: 21190015
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced solubilization and desorption of organochlorine pesticides (OCPs) from soil by oil-swollen micelles formed with a nonionic surfactant.
    Zheng G; Selvam A; Wong JW
    Environ Sci Technol; 2012 Nov; 46(21):12062-8. PubMed ID: 22998366
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functioning of metal contaminated garden soil after remediation.
    Jelusic M; Grcman H; Vodnik D; Suhadolc M; Lestan D
    Environ Pollut; 2013 Mar; 174():63-70. PubMed ID: 23246748
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Organochlorine pesticides in surface soils from obsolete pesticide dumping ground in Hyderabad City, Pakistan: contamination levels and their potential for air-soil exchange.
    Alamdar A; Syed JH; Malik RN; Katsoyiannis A; Liu J; Li J; Zhang G; Jones KC
    Sci Total Environ; 2014 Feb; 470-471():733-41. PubMed ID: 24184550
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of EDTA washing of metal polluted garden soils. Part I: Toxicity hazards and impact on soil properties.
    Jelusic M; Lestan D
    Sci Total Environ; 2014 Mar; 475():132-41. PubMed ID: 24315027
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Remediation of Pb-contaminated soils by washing with hydrochloric acid and subsequent immobilization with calcite and allophanic soil.
    Isoyama M; Wada S
    J Hazard Mater; 2007 May; 143(3):636-42. PubMed ID: 17267106
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of mobility, bioavailability and toxicity of Pb and Cd in contaminated soil using TCLP, BCR and earthworms.
    Kede ML; Correia FV; Conceição PF; Junior SF; Marques M; Moreira JC; Pérez DV
    Int J Environ Res Public Health; 2014 Nov; 11(11):11528-40. PubMed ID: 25386955
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.