These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 24794509)

  • 21. Application of the symplectic finite-difference time-domain method to light scattering by small particles.
    Zhai PW; Kattawar GW; Yang P; Li C
    Appl Opt; 2005 Mar; 44(9):1650-6. PubMed ID: 15813268
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Finite-difference time-domain solution of light scattering by dielectric particles with a perfectly matched layer absorbing boundary condition.
    Sun W; Fu Q; Chen Z
    Appl Opt; 1999 May; 38(15):3141-51. PubMed ID: 18319902
    [TBL] [Abstract][Full Text] [Related]  

  • 23. General finite-difference time-domain solution of an arbitrary electromagnetic source interaction with an arbitrary dielectric surface.
    Sun W; Pan H; Videen G
    Appl Opt; 2009 Nov; 48(31):6015-25. PubMed ID: 19881669
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A hybrid explicit implicit staggered grid finite-difference scheme for the first-order acoustic wave equation modeling.
    Liang W; Wang Y; Cao J; Iturrarán-Viveros U
    Sci Rep; 2022 Jun; 12(1):10967. PubMed ID: 35768539
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impedance-matched absorbers for finite-difference parabolic equation algorithms.
    Yevick D; Thomson DJ
    J Acoust Soc Am; 2000 Mar; 107(3):1226-34. PubMed ID: 10738779
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Numerical absorbing boundary conditions based on a damped wave equation for pseudospectral time-domain acoustic simulations.
    Spa C; Reche-López P; Hernández E
    ScientificWorldJournal; 2014; 2014():285945. PubMed ID: 24737966
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Full-wave simulation of optical waveguides via truncation in the method of moments using PML absorbing boundary conditions.
    Karagounis G; De Zutter D; Vande Ginste D
    Opt Express; 2016 Dec; 24(25):28326-28336. PubMed ID: 27958543
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stability analysis of second- and fourth-order finite-difference modelling of wave propagation in orthotropic media.
    Veres IA
    Ultrasonics; 2010 Mar; 50(3):431-8. PubMed ID: 19913266
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unified perfectly matched layer for finite-difference time-domain modeling of dispersive optical materials.
    Udagedara I; Premaratne M; Rukhlenko ID; Hattori HT; Agrawal GP
    Opt Express; 2009 Nov; 17(23):21179-90. PubMed ID: 19997357
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Perfectly Matched Layer absorbing boundary for fluid-structure interactions using the Immersed Finite Element Method.
    Yang J; Yu F; Krane M; Zhang LT
    J Fluids Struct; 2018 Jan; 76():135-152. PubMed ID: 29151673
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An efficient hybrid method for scattering from arbitrary dielectric objects buried under a rough surface: TM case.
    Xu RW; Guo LX
    Opt Express; 2014 Mar; 22(6):6844-58. PubMed ID: 24664033
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A perfectly matched layer formulation for modeling transient wave propagation in an unbounded fluid-solid medium.
    Assi H; Cobbold RS
    J Acoust Soc Am; 2016 Apr; 139(4):1528. PubMed ID: 27106301
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A k-space method for coupled first-order acoustic propagation equations.
    Tabei M; Mast TD; Waag RC
    J Acoust Soc Am; 2002 Jan; 111(1 Pt 1):53-63. PubMed ID: 11831824
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unified approach to split absorbing boundary conditions for nonlinear Schrödinger equations.
    Zhang J; Xu Z; Wu X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 2):026709. PubMed ID: 18850975
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Finite difference time domain methods for piezoelectric crystals.
    Chagla F; Smith PM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Oct; 53(10):1895-901. PubMed ID: 17036798
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Memory cost of absorbing conditions for the finite-difference time-domain method.
    Chobeau P; Savioja L
    J Acoust Soc Am; 2016 Jul; 140(1):EL119. PubMed ID: 27475200
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Local absorbing boundary conditions for a linearized Korteweg-de Vries equation.
    Zhang W; Li H; Wu X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053305. PubMed ID: 25353913
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A generalized recursive convolution method for time-domain propagation in porous media.
    Dragna D; Pineau P; Blanc-Benon P
    J Acoust Soc Am; 2015 Aug; 138(2):1030-42. PubMed ID: 26328719
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Stiffness Reduction Method for efficient absorption of waves at boundaries for use in commercial Finite Element codes.
    Pettit JR; Walker A; Cawley P; Lowe MJ
    Ultrasonics; 2014 Sep; 54(7):1868-79. PubMed ID: 24359871
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A low-order unstructured-mesh approach for computational electromagnetics in the time domain.
    El Hachemi M; Hassan O; Morgan K; Rowse D; Weatherill N
    Philos Trans A Math Phys Eng Sci; 2004 Mar; 362(1816):445-69. PubMed ID: 15306503
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.