BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 24794633)

  • 1. Collier/OLF/EBF-dependent transcriptional dynamics control pharyngeal muscle specification from primed cardiopharyngeal progenitors.
    Razy-Krajka F; Lam K; Wang W; Stolfi A; Joly M; Bonneau R; Christiaen L
    Dev Cell; 2014 May; 29(3):263-76. PubMed ID: 24794633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combinatorial chromatin dynamics foster accurate cardiopharyngeal fate choices.
    Racioppi C; Wiechecki KA; Christiaen L
    Elife; 2019 Nov; 8():. PubMed ID: 31746740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation and evolution of cardiopharyngeal cell identity and behavior: insights from simple chordates.
    Kaplan N; Razy-Krajka F; Christiaen L
    Curr Opin Genet Dev; 2015 Jun; 32():119-28. PubMed ID: 25819888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NK4 antagonizes Tbx1/10 to promote cardiac versus pharyngeal muscle fate in the ascidian second heart field.
    Wang W; Razy-Krajka F; Siu E; Ketcham A; Christiaen L
    PLoS Biol; 2013 Dec; 11(12):e1001725. PubMed ID: 24311985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An FGF-driven feed-forward circuit patterns the cardiopharyngeal mesoderm in space and time.
    Razy-Krajka F; Gravez B; Kaplan N; Racioppi C; Wang W; Christiaen L
    Elife; 2018 Feb; 7():. PubMed ID: 29431097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ring Finger 149-Related Is an FGF/MAPK-Independent Regulator of Pharyngeal Muscle Fate Specification.
    Vitrinel B; Vogel C; Christiaen L
    Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37240211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early chordate origins of the vertebrate second heart field.
    Stolfi A; Gainous TB; Young JJ; Mori A; Levine M; Christiaen L
    Science; 2010 Jul; 329(5991):565-8. PubMed ID: 20671188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A single-cell transcriptional roadmap for cardiopharyngeal fate diversification.
    Wang W; Niu X; Stuart T; Jullian E; Mauck WM; Kelly RG; Satija R; Christiaen L
    Nat Cell Biol; 2019 Jun; 21(6):674-686. PubMed ID: 31160712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single cell multi-omic analysis identifies a Tbx1-dependent multilineage primed population in murine cardiopharyngeal mesoderm.
    Nomaru H; Liu Y; De Bono C; Righelli D; Cirino A; Wang W; Song H; Racedo SE; Dantas AG; Zhang L; Cai CL; Angelini C; Christiaen L; Kelly RG; Baldini A; Zheng D; Morrow BE
    Nat Commun; 2021 Nov; 12(1):6645. PubMed ID: 34789765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emergence of heart and branchiomeric muscles in cardiopharyngeal mesoderm.
    Lescroart F; Dumas CE; Adachi N; Kelly RG
    Exp Cell Res; 2022 Jan; 410(1):112931. PubMed ID: 34798131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Divergent mechanisms regulate conserved cardiopharyngeal development and gene expression in distantly related ascidians.
    Stolfi A; Lowe EK; Racioppi C; Ristoratore F; Brown CT; Swalla BJ; Christiaen L
    Elife; 2014 Sep; 3():e03728. PubMed ID: 25209999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Initial characterization of Wnt-Tcf functions during Ciona heart development.
    Kaplan NA; Wang W; Christiaen L
    Dev Biol; 2019 Apr; 448(2):199-209. PubMed ID: 30635127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wnt signaling balances specification of the cardiac and pharyngeal muscle fields.
    Mandal A; Holowiecki A; Song YC; Waxman JS
    Mech Dev; 2017 Feb; 143():32-41. PubMed ID: 28087459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pharyngeal mesoderm development during embryogenesis: implications for both heart and head myogenesis.
    Tzahor E; Evans SM
    Cardiovasc Res; 2011 Jul; 91(2):196-202. PubMed ID: 21498416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The contribution of Islet1-expressing splanchnic mesoderm cells to distinct branchiomeric muscles reveals significant heterogeneity in head muscle development.
    Nathan E; Monovich A; Tirosh-Finkel L; Harrelson Z; Rousso T; Rinon A; Harel I; Evans SM; Tzahor E
    Development; 2008 Feb; 135(4):647-57. PubMed ID: 18184728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rewiring of an ancestral Tbx1/10-Ebf-Mrf network for pharyngeal muscle specification in distinct embryonic lineages.
    Tolkin T; Christiaen L
    Development; 2016 Oct; 143(20):3852-3862. PubMed ID: 27802138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hox-mediated endodermal identity patterns pharyngeal muscle formation in the chordate pharynx.
    Yoshida K; Nakahata A; Treen N; Sakuma T; Yamamoto T; Sasakura Y
    Development; 2017 May; 144(9):1629-1634. PubMed ID: 28289133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Craniofacial Muscle Development.
    Michailovici I; Eigler T; Tzahor E
    Curr Top Dev Biol; 2015; 115():3-30. PubMed ID: 26589919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of Bipotent Cardiac/Skeletal Myogenic Progenitors from MESP1+ Mesoderm.
    Chan SS; Hagen HR; Swanson SA; Stewart R; Boll KA; Aho J; Thomson JA; Kyba M
    Stem Cell Reports; 2016 Jan; 6(1):26-34. PubMed ID: 26771351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Divergent early mesoderm specification underlies distinct head and trunk muscle programmes in vertebrates.
    Nandkishore N; Vyas B; Javali A; Ghosh S; Sambasivan R
    Development; 2018 Sep; 145(18):. PubMed ID: 30237317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.