BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

598 related articles for article (PubMed ID: 24794801)

  • 1. Bacterial resistance of self-assembled surfaces using PPOm-b-PSBMAn zwitterionic copolymer - concomitant effects of surface topography and surface chemistry on attachment of live bacteria.
    Hsiao SW; Venault A; Yang HS; Chang Y
    Colloids Surf B Biointerfaces; 2014 Jun; 118():254-60. PubMed ID: 24794801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zwitterionic polymer brushes via dopamine-initiated ATRP from PET sheets for improving hemocompatible and antifouling properties.
    Jin X; Yuan J; Shen J
    Colloids Surf B Biointerfaces; 2016 Sep; 145():275-284. PubMed ID: 27208441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface charge control for zwitterionic polymer brushes: Tailoring surface properties to antifouling applications.
    Guo S; Jańczewski D; Zhu X; Quintana R; He T; Neoh KG
    J Colloid Interface Sci; 2015 Aug; 452():43-53. PubMed ID: 25913777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorbed poly(ethyleneoxide)-poly(propyleneoxide) copolymers on synthetic surfaces: spectroscopy and microscopy of polymer structures and effects on adhesion of skin-borne bacteria.
    Marsh LH; Coke M; Dettmar PW; Ewen RJ; Havler M; Nevell TG; Smart JD; Smith JR; Timmins B; Tsibouklis J; Alexander C
    J Biomed Mater Res; 2002 Sep; 61(4):641-52. PubMed ID: 12115455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zwitterionic surface grafting of epoxylated sulfobetaine copolymers for the development of stealth biomaterial interfaces.
    Chou YN; Wen TC; Chang Y
    Acta Biomater; 2016 Aug; 40():78-91. PubMed ID: 27045347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anti-biofilm surfaces from mixed dopamine-modified polymer brushes: synergistic role of cationic and zwitterionic chains to resist staphyloccocus aureus.
    He Y; Wan X; Xiao K; Lin W; Li J; Li Z; Luo F; Tan H; Li J; Fu Q
    Biomater Sci; 2019 Dec; 7(12):5369-5382. PubMed ID: 31621697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrospun zwitterionic poly(sulfobetaine methacrylate) for nonadherent, superabsorbent, and antimicrobial wound dressing applications.
    Lalani R; Liu L
    Biomacromolecules; 2012 Jun; 13(6):1853-63. PubMed ID: 22545647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial resistance control on mineral surfaces of hydroxyapatite and human teeth via surface charge-driven antifouling coatings.
    Venault A; Yang HS; Chiang YC; Lee BS; Ruaan RC; Chang Y
    ACS Appl Mater Interfaces; 2014 Mar; 6(5):3201-10. PubMed ID: 24513459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applying thermosettable zwitterionic copolymers as general fouling-resistant and thermal-tolerant biomaterial interfaces.
    Chou YN; Chang Y; Wen TC
    ACS Appl Mater Interfaces; 2015 May; 7(19):10096-107. PubMed ID: 25912841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable bioadhesive copolymer hydrogels of thermoresponsive poly(N-isopropyl acrylamide) containing zwitterionic polysulfobetaine.
    Chang Y; Yandi W; Chen WY; Shih YJ; Yang CC; Chang Y; Ling QD; Higuchi A
    Biomacromolecules; 2010 Apr; 11(4):1101-10. PubMed ID: 20201492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Grafting Density and Film Thickness on the Adhesion of Staphylococcus epidermidis to Poly(2-hydroxy ethyl methacrylate) and Poly(poly(ethylene glycol)methacrylate) Brushes.
    Ibanescu SA; Nowakowska J; Khanna N; Landmann R; Klok HA
    Macromol Biosci; 2016 May; 16(5):676-85. PubMed ID: 26757483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly protein-resistant coatings from well-defined diblock copolymers containing sulfobetaines.
    Chang Y; Chen S; Zhang Z; Jiang S
    Langmuir; 2006 Feb; 22(5):2222-6. PubMed ID: 16489810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface self-assembled PEGylation of fluoro-based PVDF membranes via hydrophobic-driven copolymer anchoring for ultra-stable biofouling resistance.
    Lin NJ; Yang HS; Chang Y; Tung KL; Chen WH; Cheng HW; Hsiao SW; Aimar P; Yamamoto K; Lai JY
    Langmuir; 2013 Aug; 29(32):10183-93. PubMed ID: 23906111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of poly(ethylene oxide)-based copolymer on protein adsorption and bacterial adhesion on stainless steel: modulation by surface hydrophobicity.
    Yang Y; Rouxhet PG; Chudziak D; Telegdi J; Dupont-Gillain CC
    Bioelectrochemistry; 2014 Jun; 97():127-36. PubMed ID: 24650936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced medical infection related bacterial strains adhesion on bioactive RGD modified titanium surfaces: a first step toward cell selective surfaces.
    Maddikeri RR; Tosatti S; Schuler M; Chessari S; Textor M; Richards RG; Harris LG
    J Biomed Mater Res A; 2008 Feb; 84(2):425-35. PubMed ID: 17618480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface zwitterionization of expanded poly(tetrafluoroethylene) membranes via atmospheric plasma-induced polymerization for enhanced skin wound healing.
    Jhong JF; Venault A; Hou CC; Chen SH; Wei TC; Zheng J; Huang J; Chang Y
    ACS Appl Mater Interfaces; 2013 Jul; 5(14):6732-42. PubMed ID: 23795955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of modification of titanium surfaces to graft poly(ethylene glycol)methacrylate-arginine-glycine-aspartic polymer brushes on bacterial adhesion and osteoblast cell attachment].
    Liu D; Gong YJ; Xiao Q; Li ZA
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2016 Aug; 51(8):491-5. PubMed ID: 27511041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioactive zwitterionic polymer brushes grafted from silicon wafers via SI-ATRP for enhancement of antifouling properties and endothelial cell selectivity.
    Wei Y; Zhang J; Feng X; Liu D
    J Biomater Sci Polym Ed; 2017 Dec; 28(18):2101-2116. PubMed ID: 28891389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antifouling, antibacterial and non-cytotoxic transparent cellulose membrane with grafted zwitterion and quaternary ammonium copolymers.
    Xu C; Jiang J; Oguzlu H; Zheng Y; Jiang F
    Carbohydr Polym; 2020 Dec; 250():116960. PubMed ID: 33049896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanopatterned antimicrobial enzymatic surfaces combining biocidal and fouling release properties.
    Yu Q; Ista LK; López GP
    Nanoscale; 2014 May; 6(9):4750-7. PubMed ID: 24658328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.