These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 24794972)

  • 61. Identification and elucidation of in vivo function of two alanine racemases from Pseudomonas putida KT2440.
    Duque E; Daddaoua A; Cordero BF; De la Torre J; Antonia Molina-Henares M; Ramos JL
    Environ Microbiol Rep; 2017 Oct; 9(5):581-588. PubMed ID: 28799718
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Production of two monomer structures containing medium-chain-length polyhydroxyalkanoates by beta-oxidation-impaired mutant of Pseudomonas putida KT2442.
    Ma L; Zhang H; Liu Q; Chen J; Zhang J; Chen GQ
    Bioresour Technol; 2009 Oct; 100(20):4891-4. PubMed ID: 19505819
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Overproduction of MCL-PHA with high 3-hydroxydecanoate Content.
    Gao J; Vo MT; Ramsay JA; Ramsay BA
    Biotechnol Bioeng; 2018 Feb; 115(2):390-400. PubMed ID: 29030961
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Initiation of fatty acid biosynthesis in Pseudomonas putida KT2440.
    McNaught KJ; Kuatsjah E; Zahn M; Prates ÉT; Shao H; Bentley GJ; Pickford AR; Gruber JN; Hestmark KV; Jacobson DA; Poirier BC; Ling C; San Marchi M; Michener WE; Nicora CD; Sanders JN; Szostkiewicz CJ; Veličković D; Zhou M; Munoz N; Kim YM; Magnuson JK; Burnum-Johnson KE; Houk KN; McGeehan JE; Johnson CW; Beckham GT
    Metab Eng; 2023 Mar; 76():193-203. PubMed ID: 36796578
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Comparison of mcl-Poly(3-hydroxyalkanoates) synthesis by different Pseudomonas putida strains from crude glycerol: citrate accumulates at high titer under PHA-producing conditions.
    Poblete-Castro I; Binger D; Oehlert R; Rohde M
    BMC Biotechnol; 2014 Dec; 14():962. PubMed ID: 25532606
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Novel biodegradable aromatic plastics from a bacterial source. Genetic and biochemical studies on a route of the phenylacetyl-coa catabolon.
    García B; Olivera ER; Miñambres B; Fernández-Valverde M; Cañedo LM; Prieto MA; García JL; Martínez M; Luengo JM
    J Biol Chem; 1999 Oct; 274(41):29228-41. PubMed ID: 10506180
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Proteome reference map of Pseudomonas putida strain KT2440 for genome expression profiling: distinct responses of KT2440 and Pseudomonas aeruginosa strain PAO1 to iron deprivation and a new form of superoxide dismutase.
    Heim S; Ferrer M; Heuer H; Regenhardt D; Nimtz M; Timmis KN
    Environ Microbiol; 2003 Dec; 5(12):1257-69. PubMed ID: 14641572
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Inactivation of isocitrate lyase leads to increased production of medium-chain-length poly(3-hydroxyalkanoates) in Pseudomonas putida.
    Klinke S; Dauner M; Scott G; Kessler B; Witholt B
    Appl Environ Microbiol; 2000 Mar; 66(3):909-13. PubMed ID: 10698750
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Medium chain length polyhydroxyalkanoate (mcl-PHA) production from volatile fatty acids derived from the anaerobic digestion of grass.
    Cerrone F; Choudhari SK; Davis R; Cysneiros D; O'Flaherty V; Duane G; Casey E; Guzik MW; Kenny ST; Babu RP; O'Connor K
    Appl Microbiol Biotechnol; 2014 Jan; 98(2):611-20. PubMed ID: 24162086
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Bacterial synthesis of polyhydroxyalkanoates containing aromatic and aliphatic monomers by Pseudomonas putida CA-3.
    Ward PG; O'Connor KE
    Int J Biol Macromol; 2005 Apr; 35(3-4):127-33. PubMed ID: 15811466
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Altering the substrate specificity of polyhydroxyalkanoate synthase 1 derived from Pseudomonas putida GPo1 by localized semirandom mutagenesis.
    Sheu DS; Lee CY
    J Bacteriol; 2004 Jul; 186(13):4177-84. PubMed ID: 15205419
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Time-Course Proteomic Analysis of
    Możejko-Ciesielska J; Mostek A
    Polymers (Basel); 2019 Apr; 11(5):. PubMed ID: 31035475
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Novel polyhydroxyalkanoate copolymers produced in Pseudomonas putida by metagenomic polyhydroxyalkanoate synthases.
    Cheng J; Charles TC
    Appl Microbiol Biotechnol; 2016 Sep; 100(17):7611-27. PubMed ID: 27333909
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Bio-upgrading of ethanol to fatty acid ethyl esters by metabolic engineering of Pseudomonas putida KT2440.
    Sarwar A; Nguyen LT; Lee EY
    Bioresour Technol; 2022 Apr; 350():126899. PubMed ID: 35217159
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Molecular basis of substrate recognition in D-3-hydroxybutyrate dehydrogenase from Pseudomonas putida.
    Feller C; Günther R; Hofmann HJ; Grunow M
    Chembiochem; 2006 Sep; 7(9):1410-8. PubMed ID: 16888731
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Enhancement of polyhydroxyalkanoate production by co-feeding lignin derivatives with glycerol in Pseudomonas putida KT2440.
    Xu Z; Pan C; Li X; Hao N; Zhang T; Gaffrey MJ; Pu Y; Cort JR; Ragauskas AJ; Qian WJ; Yang B
    Biotechnol Biofuels; 2021 Jan; 14(1):11. PubMed ID: 33413621
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Cloning and functional characterization of ACAD-9, a novel member of human acyl-CoA dehydrogenase family.
    Zhang J; Zhang W; Zou D; Chen G; Wan T; Zhang M; Cao X
    Biochem Biophys Res Commun; 2002 Oct; 297(4):1033-42. PubMed ID: 12359260
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Fatty Acid and Alcohol Metabolism in Pseudomonas putida: Functional Analysis Using Random Barcode Transposon Sequencing.
    Thompson MG; Incha MR; Pearson AN; Schmidt M; Sharpless WA; Eiben CB; Cruz-Morales P; Blake-Hedges JM; Liu Y; Adams CA; Haushalter RW; Krishna RN; Lichtner P; Blank LM; Mukhopadhyay A; Deutschbauer AM; Shih PM; Keasling JD
    Appl Environ Microbiol; 2020 Oct; 86(21):. PubMed ID: 32826213
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Metabolic engineering and characterization of phaC1 and phaC2 genes from Pseudomonas putida KCTC1639 for overproduction of medium-chain-length polyhydroxyalkanoate.
    Kim TK; Jung YM; Vo MT; Shioya S; Lee YH
    Biotechnol Prog; 2006; 22(6):1541-6. PubMed ID: 17137299
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Identification and characterization of the AgmR regulator of Pseudomonas putida: role in alcohol utilization.
    Vrionis HA; Daugulis AJ; Kropinski AM
    Appl Microbiol Biotechnol; 2002 Mar; 58(4):469-75. PubMed ID: 11954793
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.