These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 24794974)
21. [The transgenerational mechanisms in developmental programming of metabolic diseases]. Zambrano E Rev Invest Clin; 2009; 61(1):41-52. PubMed ID: 19507474 [TBL] [Abstract][Full Text] [Related]
22. Intergenerational transmission of glucose intolerance and obesity by in utero undernutrition in mice. Jimenez-Chillaron JC; Isganaitis E; Charalambous M; Gesta S; Pentinat-Pelegrin T; Faucette RR; Otis JP; Chow A; Diaz R; Ferguson-Smith A; Patti ME Diabetes; 2009 Feb; 58(2):460-8. PubMed ID: 19017762 [TBL] [Abstract][Full Text] [Related]
23. Hepatic IGF1 DNA methylation is influenced by gender but not by intrauterine growth restriction in the young lamb. Carr DJ; Milne JS; Aitken RP; Adam CL; Wallace JM J Dev Orig Health Dis; 2015 Dec; 6(6):558-72. PubMed ID: 26310177 [TBL] [Abstract][Full Text] [Related]
24. Undernutrition during pregnancy in mice leads to dysfunctional cardiac muscle respiration in adult offspring. Beauchamp B; Thrush AB; Quizi J; Antoun G; McIntosh N; Al-Dirbashi OY; Patti ME; Harper ME Biosci Rep; 2015 Apr; 35(3):. PubMed ID: 26182362 [TBL] [Abstract][Full Text] [Related]
25. Intergenerational Inheritance of Hepatic Steatosis in a Mouse Model of Childhood Obesity: Potential Involvement of Germ-Line microRNAs. Ribas-Aulinas F; Ribo S; Casas E; Mourin-Fernandez M; Ramon-Krauel M; Diaz R; Lerin C; Kalko SG; Vavouri T; Jimenez-Chillaron JC Nutrients; 2023 Mar; 15(5):. PubMed ID: 36904241 [TBL] [Abstract][Full Text] [Related]
26. Intrauterine metabolic programming alteration increased susceptibility to non-alcoholic adult fatty liver disease in prenatal caffeine-exposed rat offspring. Wang L; Shen L; Ping J; Zhang L; Liu Z; Wu Y; Liu Y; Huang H; Chen L; Wang H Toxicol Lett; 2014 Jan; 224(3):311-8. PubMed ID: 24239806 [TBL] [Abstract][Full Text] [Related]
27. Genetic selection of embryos that later develop the metabolic syndrome. Edwards MJ Med Hypotheses; 2012 May; 78(5):621-5. PubMed ID: 22348993 [TBL] [Abstract][Full Text] [Related]
28. Maternal protein restriction in rats leads to reduced PGC-1α expression via altered DNA methylation in skeletal muscle. Zeng Y; Gu P; Liu K; Huang P Mol Med Rep; 2013 Jan; 7(1):306-12. PubMed ID: 23117952 [TBL] [Abstract][Full Text] [Related]
29. Uteroplacental insufficiency alters DNA methylation, one-carbon metabolism, and histone acetylation in IUGR rats. MacLennan NK; James SJ; Melnyk S; Piroozi A; Jernigan S; Hsu JL; Janke SM; Pham TD; Lane RH Physiol Genomics; 2004 Jun; 18(1):43-50. PubMed ID: 15084713 [TBL] [Abstract][Full Text] [Related]
30. Developmental origins of beta-cell failure in type 2 diabetes: the role of epigenetic mechanisms. Simmons RA Pediatr Res; 2007 May; 61(5 Pt 2):64R-67R. PubMed ID: 17413845 [TBL] [Abstract][Full Text] [Related]
31. Liver X receptor mediates hepatitis B virus X protein-induced lipogenesis in hepatitis B virus-associated hepatocellular carcinoma. Na TY; Shin YK; Roh KJ; Kang SA; Hong I; Oh SJ; Seong JK; Park CK; Choi YL; Lee MO Hepatology; 2009 Apr; 49(4):1122-31. PubMed ID: 19105208 [TBL] [Abstract][Full Text] [Related]
32. Effects of maternal LPS exposure during pregnancy on metabolic phenotypes in female offspring. Liu XJ; Wang BW; Zhao M; Zhang C; Chen YH; Hu CQ; Zhao H; Wang H; Chen X; Tao FB; Xu DX PLoS One; 2014; 9(12):e114780. PubMed ID: 25479255 [TBL] [Abstract][Full Text] [Related]
33. Impaired oxidative phosphorylation in hepatic mitochondria in growth-retarded rats. Peterside IE; Selak MA; Simmons RA Am J Physiol Endocrinol Metab; 2003 Dec; 285(6):E1258-66. PubMed ID: 14607783 [TBL] [Abstract][Full Text] [Related]
34. Fetal metabolic programming and epigenetic modifications: a systems biology approach. Sookoian S; Gianotti TF; Burgueño AL; Pirola CJ Pediatr Res; 2013 Apr; 73(4 Pt 2):531-42. PubMed ID: 23314294 [TBL] [Abstract][Full Text] [Related]
35. Global DNA methylation was changed by a maternal high-lipid, high-energy diet during gestation and lactation in male adult mice liver. Yu HL; Dong S; Gao LF; Li L; Xi YD; Ma WW; Yuan LH; Xiao R Br J Nutr; 2015 Apr; 113(7):1032-9. PubMed ID: 25778733 [TBL] [Abstract][Full Text] [Related]
36. Effects of a high-fat diet exposure in utero on the metabolic syndrome-like phenomenon in mouse offspring through epigenetic changes in adipocytokine gene expression. Masuyama H; Hiramatsu Y Endocrinology; 2012 Jun; 153(6):2823-30. PubMed ID: 22434078 [TBL] [Abstract][Full Text] [Related]
37. Altered expression of transcription factors and genes regulating lipogenesis in liver and adipose tissue of mice with high fat diet-induced obesity and nonalcoholic fatty liver disease. Morgan K; Uyuni A; Nandgiri G; Mao L; Castaneda L; Kathirvel E; French SW; Morgan TR Eur J Gastroenterol Hepatol; 2008 Sep; 20(9):843-54. PubMed ID: 18794597 [TBL] [Abstract][Full Text] [Related]
38. Clusterin decreases hepatic SREBP-1c expression and lipid accumulation. Seo HY; Kim MK; Jung YA; Jang BK; Yoo EK; Park KG; Lee IK Endocrinology; 2013 May; 154(5):1722-30. PubMed ID: 23515283 [TBL] [Abstract][Full Text] [Related]
39. IUGR with infantile overnutrition programs an insulin-resistant phenotype through DNA methylation of peroxisome proliferator-activated receptor-γ coactivator-1α in rats. Xie X; Lin T; Zhang M; Liao L; Yuan G; Gao H; Ning Q; Luo X Pediatr Res; 2015 May; 77(5):625-32. PubMed ID: 25675425 [TBL] [Abstract][Full Text] [Related]
40. Liver X receptor gene polymorphisms and adipose tissue expression levels in obesity. Dahlman I; Nilsson M; Jiao H; Hoffstedt J; Lindgren CM; Humphreys K; Kere J; Gustafsson JA; Arner P; Dahlman-Wright K Pharmacogenet Genomics; 2006 Dec; 16(12):881-9. PubMed ID: 17108812 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]