These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 24795590)

  • 1. Online transcranial Doppler ultrasonographic control of an onscreen keyboard.
    Lu J; Mamun KA; Chau T
    Front Hum Neurosci; 2014; 8():199. PubMed ID: 24795590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An online three-class Transcranial Doppler ultrasound brain computer interface.
    Goyal A; Samadani AA; Guerguerian AM; Chau T
    Neurosci Res; 2016 Jun; 107():47-56. PubMed ID: 26795195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequential hypothesis testing for automatic detection of task-related changes in cerebral perfusion in a brain-computer interface.
    Faulkner HG; Myrden A; Li M; Mamun K; Chau T
    Neurosci Res; 2015 Nov; 100():29-38. PubMed ID: 26163771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A brain-computer interface based on bilateral transcranial Doppler ultrasound.
    Myrden AJ; Kushki A; Sejdić E; Guerguerian AM; Chau T
    PLoS One; 2011; 6(9):e24170. PubMed ID: 21915292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards a hemodynamic BCI using transcranial Doppler without user-specific training data.
    Aleem I; Chau T
    J Neural Eng; 2013 Feb; 10(1):016005. PubMed ID: 23234760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of an SSVEP-based BCI spelling system adopting a QWERTY-style LED keyboard.
    Hwang HJ; Lim JH; Jung YJ; Choi H; Lee SW; Im CH
    J Neurosci Methods; 2012 Jun; 208(1):59-65. PubMed ID: 22580222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic topographical pattern classification of multichannel prefrontal NIRS signals: II. Online differentiation of mental arithmetic and rest.
    Schudlo LC; Chau T
    J Neural Eng; 2014 Feb; 11(1):016003. PubMed ID: 24311057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement of Information Transfer Rates Using a Hybrid EEG-NIRS Brain-Computer Interface with a Short Trial Length: Offline and Pseudo-Online Analyses.
    Shin J; Kim DW; Müller KR; Hwang HJ
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29874804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimising non-invasive brain-computer interface systems for free communication between naïve human participants.
    Renton AI; Mattingley JB; Painter DR
    Sci Rep; 2019 Dec; 9(1):18705. PubMed ID: 31822715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of Four Control Methods for a Five-Choice Assistive Technology.
    Halder S; Takano K; Kansaku K
    Front Hum Neurosci; 2018; 12():228. PubMed ID: 29928196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards a multimodal brain-computer interface: combining fNIRS and fTCD measurements to enable higher classification accuracy.
    Faress A; Chau T
    Neuroimage; 2013 Aug; 77():186-94. PubMed ID: 23541802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing SSVEP-Based BCI System towards Practical High-Speed Spelling.
    Tang J; Xu M; Han J; Liu M; Dai T; Chen S; Ming D
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32731432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards increased data transmission rate for a three-class metabolic brain-computer interface based on transcranial Doppler ultrasound.
    Myrden A; Kushki A; Sejdić E; Chau T
    Neurosci Lett; 2012 Oct; 528(2):99-103. PubMed ID: 23006241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of tactile, auditory, and visual modality for brain-computer interface use: a case study with a patient in the locked-in state.
    Kaufmann T; Holz EM; Kübler A
    Front Neurosci; 2013; 7():129. PubMed ID: 23898236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increasing BCI communication rates with dynamic stopping towards more practical use: an ALS study.
    Mainsah BO; Collins LM; Colwell KA; Sellers EW; Ryan DB; Caves K; Throckmorton CS
    J Neural Eng; 2015 Feb; 12(1):016013. PubMed ID: 25588137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An online SSVEP-BCI system in an optical see-through augmented reality environment.
    Ke Y; Liu P; An X; Song X; Ming D
    J Neural Eng; 2020 Feb; 17(1):016066. PubMed ID: 31614342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implementing Over 100 Command Codes for a High-Speed Hybrid Brain-Computer Interface Using Concurrent P300 and SSVEP Features.
    Xu M; Han J; Wang Y; Jung TP; Ming D
    IEEE Trans Biomed Eng; 2020 Nov; 67(11):3073-3082. PubMed ID: 32149621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A brain-computer interface driven by imagining different force loads on a single hand: an online feasibility study.
    Wang K; Wang Z; Guo Y; He F; Qi H; Xu M; Ming D
    J Neuroeng Rehabil; 2017 Sep; 14(1):93. PubMed ID: 28893295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How many people are able to control a P300-based brain-computer interface (BCI)?
    Guger C; Daban S; Sellers E; Holzner C; Krausz G; Carabalona R; Gramatica F; Edlinger G
    Neurosci Lett; 2009 Oct; 462(1):94-8. PubMed ID: 19545601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-paced brain-computer interface control of ambulation in a virtual reality environment.
    Wang PT; King CE; Chui LA; Do AH; Nenadic Z
    J Neural Eng; 2012 Oct; 9(5):056016. PubMed ID: 23010771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.