BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 24795607)

  • 1. Passive listening to preferred motor tempo modulates corticospinal excitability.
    Michaelis K; Wiener M; Thompson JC
    Front Hum Neurosci; 2014; 8():252. PubMed ID: 24795607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Testing the stability of 'Default' motor and auditory-perceptual rhythms-A replication failure dataset.
    Kliger Amrani A; Zion Golumbic E
    Data Brief; 2020 Oct; 32():106044. PubMed ID: 32775563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Musical groove modulates motor cortex excitability: a TMS investigation.
    Stupacher J; Hove MJ; Novembre G; Schütz-Bosbach S; Keller PE
    Brain Cogn; 2013 Jul; 82(2):127-36. PubMed ID: 23660433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spontaneous and stimulus-driven rhythmic behaviors in ADHD adults and controls.
    Kliger Amrani A; Zion Golumbic E
    Neuropsychologia; 2020 Sep; 146():107544. PubMed ID: 32598965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibitory stimulation of the ventral premotor cortex temporarily interferes with musical beat rate preference.
    Kornysheva K; von Anshelm-Schiffer AM; Schubotz RI
    Hum Brain Mapp; 2011 Aug; 32(8):1300-10. PubMed ID: 20715082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning-in to the beat: Aesthetic appreciation of musical rhythms correlates with a premotor activity boost.
    Kornysheva K; von Cramon DY; Jacobsen T; Schubotz RI
    Hum Brain Mapp; 2010 Jan; 31(1):48-64. PubMed ID: 19585590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spontaneous motor tempo contributes to preferred music tempo regardless of music familiarity.
    Hine K; Abe K; Kinzuka Y; Shehata M; Hatano K; Matsui T; Nakauchi S
    Front Psychol; 2022; 13():952488. PubMed ID: 36467226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Individual musical tempo preference correlates with EEG beta rhythm.
    Bauer AK; Kreutz G; Herrmann CS
    Psychophysiology; 2015 Apr; 52(4):600-4. PubMed ID: 25353087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-intensity, low-frequency repetitive transcranial magnetic stimulation enhances excitability of the human corticospinal pathway.
    D'Amico JM; Dongés SC; Taylor JL
    J Neurophysiol; 2020 May; 123(5):1969-1978. PubMed ID: 32292098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of I-wave generating pathways by theta-burst stimulation: a model of plasticity induction.
    Volz LJ; Hamada M; Michely J; Pool EM; Nettekoven C; Rothwell JC; Grefkes Hermann C
    J Physiol; 2019 Dec; 597(24):5963-5971. PubMed ID: 31647123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interdependence of movement amplitude and tempo during self-paced finger tapping: evaluation of a preferred velocity hypothesis.
    Kroger C; Kagerer FA; McAuley JD
    Exp Brain Res; 2024 May; 242(5):1025-1036. PubMed ID: 38451320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of a partner's tap intervals on an individual's timing control increase in slow-tempo dyad synchronisation using finger-tapping.
    Kimura K; Ogata T; Miyake Y
    Sci Rep; 2020 May; 10(1):8237. PubMed ID: 32427888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pulsed Facilitation of Corticospinal Excitability by the Sensorimotor μ-Alpha Rhythm.
    Bergmann TO; Lieb A; Zrenner C; Ziemann U
    J Neurosci; 2019 Dec; 39(50):10034-10043. PubMed ID: 31685655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of music on corticospinal excitability is related to the perceived emotion: a transcranial magnetic stimulation study.
    Giovannelli F; Banfi C; Borgheresi A; Fiori E; Innocenti I; Rossi S; Zaccara G; Viggiano MP; Cincotta M
    Cortex; 2013 Mar; 49(3):702-10. PubMed ID: 22405960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of transcranial direct current stimulation over the human motor cortex on corticospinal and transcallosal excitability.
    Lang N; Nitsche MA; Paulus W; Rothwell JC; Lemon RN
    Exp Brain Res; 2004 Jun; 156(4):439-43. PubMed ID: 14745467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversal of Practice-related Effects on Corticospinal Excitability has no Immediate Effect on Behavioral Outcome.
    Bologna M; Rocchi L; Paparella G; Nardella A; Li Voti P; Conte A; Kojovic M; Rothwell JC; Berardelli A
    Brain Stimul; 2015; 8(3):603-12. PubMed ID: 25697591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase of beta-frequency tACS over primary motor cortex modulates corticospinal excitability.
    Schilberg L; Engelen T; Ten Oever S; Schuhmann T; de Gelder B; de Graaf TA; Sack AT
    Cortex; 2018 Jun; 103():142-152. PubMed ID: 29635161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Memory-Paced Tapping to Auditory Rhythms: Effects of Rate, Speech, and Motor Engagement.
    Kliger Amrani A; Zion Golumbic E
    J Speech Lang Hear Res; 2022 Mar; 65(3):923-939. PubMed ID: 35133867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in corticospinal motor excitability induced by non-motor linguistic tasks.
    Papathanasiou I; Filipović SR; Whurr R; Rothwell JC; Jahanshahi M
    Exp Brain Res; 2004 Jan; 154(2):218-25. PubMed ID: 14534770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Individual Differences in Resting Corticospinal Excitability Are Correlated with Reaction Time and GABA Content in Motor Cortex.
    Greenhouse I; King M; Noah S; Maddock RJ; Ivry RB
    J Neurosci; 2017 Mar; 37(10):2686-2696. PubMed ID: 28179557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.