These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 24795739)

  • 1. Polyamines control of cation transport across plant membranes: implications for ion homeostasis and abiotic stress signaling.
    Pottosin I; Shabala S
    Front Plant Sci; 2014; 5():154. PubMed ID: 24795739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-talk between reactive oxygen species and polyamines in regulation of ion transport across the plasma membrane: implications for plant adaptive responses.
    Pottosin I; Velarde-Buendía AM; Bose J; Zepeda-Jazo I; Shabala S; Dobrovinskaya O
    J Exp Bot; 2014 Mar; 65(5):1271-83. PubMed ID: 24465010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of Ion Transport Across Plant Membranes by Polyamines: Understanding Specific Modes of Action Under Stress.
    Pottosin I; Olivas-Aguirre M; Dobrovinskaya O; Zepeda-Jazo I; Shabala S
    Front Plant Sci; 2020; 11():616077. PubMed ID: 33574826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyamines interact with hydroxyl radicals in activating Ca(2+) and K(+) transport across the root epidermal plasma membranes.
    Zepeda-Jazo I; Velarde-Buendía AM; Enríquez-Figueroa R; Bose J; Shabala S; Muñiz-Murguía J; Pottosin II
    Plant Physiol; 2011 Dec; 157(4):2167-80. PubMed ID: 21980172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-selective cation channels in plasma and vacuolar membranes and their contribution to K+ transport.
    Pottosin I; Dobrovinskaya O
    J Plant Physiol; 2014 May; 171(9):732-42. PubMed ID: 24560436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methods Related to Polyamine Control of Cation Transport Across Plant Membranes.
    Zepeda-Jazo I; Pottosin I
    Methods Mol Biol; 2018; 1694():257-276. PubMed ID: 29080173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyamines cause plasma membrane depolarization, activate Ca2+-, and modulate H+-ATPase pump activity in pea roots.
    Pottosin I; Velarde-Buendía AM; Bose J; Fuglsang AT; Shabala S
    J Exp Bot; 2014 Jun; 65(9):2463-72. PubMed ID: 24723394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement of plant abiotic stress tolerance through modulation of the polyamine pathway.
    Shi H; Chan Z
    J Integr Plant Biol; 2014 Feb; 56(2):114-21. PubMed ID: 24401132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergism between polyamines and ROS in the induction of Ca ( 2+) and K (+) fluxes in roots.
    Pottosin I; Velarde-Buendía AM; Zepeda-Jazo I; Dobrovinskaya O; Shabala S
    Plant Signal Behav; 2012 Sep; 7(9):1084-7. PubMed ID: 22899073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of polyamines in the regulation of the plasma membrane and the tonoplast proton pumps under salt stress.
    Janicka-Russak M; Kabała K; Młodzińska E; Kłobus G
    J Plant Physiol; 2010 Mar; 167(4):261-9. PubMed ID: 19857911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyamines: molecules with regulatory functions in plant abiotic stress tolerance.
    Alcázar R; Altabella T; Marco F; Bortolotti C; Reymond M; Koncz C; Carrasco P; Tiburcio AF
    Planta; 2010 May; 231(6):1237-49. PubMed ID: 20221631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions of Polyamines and Phytohormones in Plant Response to Abiotic Stress.
    Napieraj N; Janicka M; Reda M
    Plants (Basel); 2023 Mar; 12(5):. PubMed ID: 36904019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Salt-sensitive and salt-tolerant barley varieties differ in the extent of potentiation of the ROS-induced K(+) efflux by polyamines.
    Velarde-Buendía AM; Shabala S; Cvikrova M; Dobrovinskaya O; Pottosin I
    Plant Physiol Biochem; 2012 Dec; 61():18-23. PubMed ID: 23031843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyamines function in stress tolerance: from synthesis to regulation.
    Liu JH; Wang W; Wu H; Gong X; Moriguchi T
    Front Plant Sci; 2015; 6():827. PubMed ID: 26528300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increasing Polyamine Contents Enhances the Stress Tolerance
    Seo SY; Kim YJ; Park KY
    Front Plant Sci; 2019; 10():1331. PubMed ID: 31736992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of vacuolar ion channels by polyamines.
    Dobrovinskaya OR; Muñiz J; Pottosin II
    J Membr Biol; 1999 Jan; 167(2):127-40. PubMed ID: 9916144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of potassium transport in plants under hostile conditions: implications for abiotic and biotic stress tolerance.
    Shabala S; Pottosin I
    Physiol Plant; 2014 Jul; 151(3):257-79. PubMed ID: 24506225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecules for Sensing Polyamines and Transducing Their Action in Plants.
    Kusano T; Sagor GHM; Berberich T
    Methods Mol Biol; 2018; 1694():25-35. PubMed ID: 29080152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyamines and abiotic stress: recent advances.
    Groppa MD; Benavides MP
    Amino Acids; 2008 Jan; 34(1):35-45. PubMed ID: 17356805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of drought and combined drought and heat stress on polyamine metabolism in proline-over-producing tobacco plants.
    Cvikrová M; Gemperlová L; Martincová O; Vanková R
    Plant Physiol Biochem; 2013 Dec; 73():7-15. PubMed ID: 24029075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.