These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
508 related articles for article (PubMed ID: 24796432)
1. Development of RNA interference-based therapeutics and application of multi-target small interfering RNAs. Li T; Wu M; Zhu YY; Chen J; Chen L Nucleic Acid Ther; 2014 Aug; 24(4):302-12. PubMed ID: 24796432 [TBL] [Abstract][Full Text] [Related]
2. RNAi-based drug discovery and its application to therapeutics. Hokaiwado N; Takeshita F; Banas A; Ochiya T IDrugs; 2008 Apr; 11(4):274-8. PubMed ID: 18379962 [TBL] [Abstract][Full Text] [Related]
4. Harnessing RNA interference to develop neonatal therapies: from Nobel Prize winning discovery to proof of concept clinical trials. DeVincenzo JP Early Hum Dev; 2009 Oct; 85(10 Suppl):S31-5. PubMed ID: 19833462 [TBL] [Abstract][Full Text] [Related]
5. Exploring chemical modifications for siRNA therapeutics: a structural and functional outlook. Shukla S; Sumaria CS; Pradeepkumar PI ChemMedChem; 2010 Mar; 5(3):328-49. PubMed ID: 20043313 [TBL] [Abstract][Full Text] [Related]
6. RNA Interference-Based Cancer Drugs: The Roadblocks, and the "Delivery" of the Promise. Das M; Musetti S; Huang L Nucleic Acid Ther; 2019 Apr; 29(2):61-66. PubMed ID: 30562145 [TBL] [Abstract][Full Text] [Related]
7. Nonviral in vivo delivery of therapeutic small interfering RNAs. Aigner A Curr Opin Mol Ther; 2007 Aug; 9(4):345-52. PubMed ID: 17694447 [TBL] [Abstract][Full Text] [Related]
10. siRNA therapeutics: big potential from small RNAs. Ryther RC; Flynt AS; Phillips JA; Patton JG Gene Ther; 2005 Jan; 12(1):5-11. PubMed ID: 15496962 [TBL] [Abstract][Full Text] [Related]
11. siRNA delivery systems for cancer treatment. Oh YK; Park TG Adv Drug Deliv Rev; 2009 Aug; 61(10):850-62. PubMed ID: 19422869 [TBL] [Abstract][Full Text] [Related]
12. Small interfering RNAs (siRNAs) in cancer therapy: a nano-based approach. Mahmoodi Chalbatani G; Dana H; Gharagouzloo E; Grijalvo S; Eritja R; Logsdon CD; Memari F; Miri SR; Rad MR; Marmari V Int J Nanomedicine; 2019; 14():3111-3128. PubMed ID: 31118626 [TBL] [Abstract][Full Text] [Related]
13. Development of RNAi technology for targeted therapy--a track of siRNA based agents to RNAi therapeutics. Zhou Y; Zhang C; Liang W J Control Release; 2014 Nov; 193():270-81. PubMed ID: 24816071 [TBL] [Abstract][Full Text] [Related]
14. Gene silencing through RNA interference (RNAi) in vivo: strategies based on the direct application of siRNAs. Aigner A J Biotechnol; 2006 Jun; 124(1):12-25. PubMed ID: 16413079 [TBL] [Abstract][Full Text] [Related]
15. RNA interference in vivo: toward synthetic small inhibitory RNA-based therapeutics. de Fougerolles A; Manoharan M; Meyers R; Vornlocher HP Methods Enzymol; 2005; 392():278-96. PubMed ID: 15644187 [TBL] [Abstract][Full Text] [Related]
16. [Advance in the study of targeting delivery system for siRNA mediated by aptamers]. Wang XL; Wang QQ; Song HF Yao Xue Xue Bao; 2012 Jul; 47(7):850-5. PubMed ID: 22993847 [TBL] [Abstract][Full Text] [Related]
17. RNA interference trigger variants: getting the most out of RNA for RNA interference-based therapeutics. Snead NM; Rossi JJ Nucleic Acid Ther; 2012 Jun; 22(3):139-46. PubMed ID: 22703279 [TBL] [Abstract][Full Text] [Related]
18. siRNAs: their potential as therapeutic agents--Part II. Methods of delivery. Singh SK; Hajeri PB Drug Discov Today; 2009 Sep; 14(17-18):859-65. PubMed ID: 19540929 [TBL] [Abstract][Full Text] [Related]
19. Therapeutic face of RNAi: in vivo challenges. Borna H; Imani S; Iman M; Azimzadeh Jamalkandi S Expert Opin Biol Ther; 2015 Feb; 15(2):269-85. PubMed ID: 25399911 [TBL] [Abstract][Full Text] [Related]
20. RNA interference and potential therapeutic applications of short interfering RNAs. Karagiannis TC; El-Osta A Cancer Gene Ther; 2005 Oct; 12(10):787-95. PubMed ID: 15891770 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]