These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 24797061)
1. Atomic layer-by-layer deposition of Pt on Pd nanocubes for catalysts with enhanced activity and durability toward oxygen reduction. Xie S; Choi SI; Lu N; Roling LT; Herron JA; Zhang L; Park J; Wang J; Kim MJ; Xie Z; Mavrikakis M; Xia Y Nano Lett; 2014 Jun; 14(6):3570-6. PubMed ID: 24797061 [TBL] [Abstract][Full Text] [Related]
2. Atomic layer-by-layer deposition of platinum on palladium octahedra for enhanced catalysts toward the oxygen reduction reaction. Park J; Zhang L; Choi SI; Roling LT; Lu N; Herron JA; Xie S; Wang J; Kim MJ; Mavrikakis M; Xia Y ACS Nano; 2015 Mar; 9(3):2635-47. PubMed ID: 25661922 [TBL] [Abstract][Full Text] [Related]
3. Deposition of Atomically Thin Pt Shells on Amorphous Palladium Phosphide Cores for Enhancing the Electrocatalytic Durability. He T; Wang W; Yang X; Shi F; Ye Z; Zheng Y; Li F; Wu J; Yin Y; Jin M ACS Nano; 2021 Apr; 15(4):7348-7356. PubMed ID: 33754689 [TBL] [Abstract][Full Text] [Related]
4. Structural evolution of concave trimetallic nanocubes with tunable ultra-thin shells for oxygen reduction reaction. Yu S; Zhang L; Zhao ZJ; Gong J Nanoscale; 2016 Sep; 8(37):16640-16649. PubMed ID: 27722398 [TBL] [Abstract][Full Text] [Related]
5. Engineering Surface Structure of Pt Nanoshells on Pd Nanocubes to Preferentially Expose Active Surfaces for ORR by Manipulating the Growth Kinetics. Wang W; Li X; He T; Liu Y; Jin M Nano Lett; 2019 Mar; 19(3):1743-1748. PubMed ID: 30721082 [TBL] [Abstract][Full Text] [Related]
6. Pt-Ag cubic nanocages with wall thickness less than 2 nm and their enhanced catalytic activity toward oxygen reduction. Sun X; Yang X; Zhang Y; Ding Y; Su D; Qin D Nanoscale; 2017 Oct; 9(39):15107-15114. PubMed ID: 28972210 [TBL] [Abstract][Full Text] [Related]
7. Enriching Silver Nanocrystals with a Second Noble Metal. Wu Y; Sun X; Yang Y; Li J; Zhang Y; Qin D Acc Chem Res; 2017 Jul; 50(7):1774-1784. PubMed ID: 28678472 [TBL] [Abstract][Full Text] [Related]
8. One-Pot Synthesis of Pd@Pt Lee CT; Wang H; Zhao M; Yang TH; Vara M; Xia Y Chemistry; 2019 Apr; 25(20):5322-5329. PubMed ID: 30768814 [TBL] [Abstract][Full Text] [Related]
9. Pd@Pt Core-Shell Concave Decahedra: A Class of Catalysts for the Oxygen Reduction Reaction with Enhanced Activity and Durability. Wang X; Vara M; Luo M; Huang H; Ruditskiy A; Park J; Bao S; Liu J; Howe J; Chi M; Xie Z; Xia Y J Am Chem Soc; 2015 Dec; 137(47):15036-42. PubMed ID: 26566188 [TBL] [Abstract][Full Text] [Related]
10. Tensile-Strained Platinum-Cobalt Alloy Surface on Palladium Octahedra as a Highly Durable Oxygen Reduction Catalyst. Zhang W; Li F; Shi F; Hu H; Liang J; Yang H; Ye Y; Mao Z; Shang W; Deng T; Ke X; Wu J ACS Appl Mater Interfaces; 2023 Jan; 15(3):3993-4000. PubMed ID: 36642872 [TBL] [Abstract][Full Text] [Related]
11. Atomic PdAu Interlayer Sandwiched into Pd/Pt Core/Shell Nanowires Achieves Superstable Oxygen Reduction Catalysis. Tao L; Huang B; Jin F; Yang Y; Luo M; Sun M; Liu Q; Gao F; Guo S ACS Nano; 2020 Sep; 14(9):11570-11578. PubMed ID: 32816456 [TBL] [Abstract][Full Text] [Related]
12. Designed synthesis of well-defined Pd@Pt core-shell nanoparticles with controlled shell thickness as efficient oxygen reduction electrocatalysts. Choi R; Choi SI; Choi CH; Nam KM; Woo SI; Park JT; Han SW Chemistry; 2013 Jun; 19(25):8190-8. PubMed ID: 23613263 [TBL] [Abstract][Full Text] [Related]
13. Quantitative Analysis of the Reduction Kinetics Responsible for the One-Pot Synthesis of Pd-Pt Bimetallic Nanocrystals with Different Structures. Zhou M; Wang H; Vara M; Hood ZD; Luo M; Yang TH; Bao S; Chi M; Xiao P; Zhang Y; Xia Y J Am Chem Soc; 2016 Sep; 138(37):12263-70. PubMed ID: 27568848 [TBL] [Abstract][Full Text] [Related]
15. Enhanced oxygen reduction activity of Pt shells on PdCu truncated octahedra with different compositions. Wu X; Xu Q; Yan Y; Huang J; Li X; Jiang Y; Zhang H; Yang D RSC Adv; 2018 Oct; 8(61):34853-34859. PubMed ID: 35547037 [TBL] [Abstract][Full Text] [Related]
16. Multimetallic AuPd@Pd@Pt core-interlayer-shell icosahedral electrocatalysts for highly efficient oxygen reduction reaction. Xu Q; Chen W; Yan Y; Wu Z; Jiang Y; Li J; Bian T; Zhang H; Wu J; Yang D Sci Bull (Beijing); 2018 Apr; 63(8):494-501. PubMed ID: 36658810 [TBL] [Abstract][Full Text] [Related]
17. Supersaturation-controlled surface structure evolution of Pd@Pt core-shell nanocrystals: enhancement of the ORR activity at a sub-10 nm scale. Qi K; Zheng W; Cui X Nanoscale; 2016 Jan; 8(3):1698-703. PubMed ID: 26693587 [TBL] [Abstract][Full Text] [Related]
18. Pt-Based Icosahedral Nanocages: Using a Combination of {111} Facets, Twin Defects, and Ultrathin Walls to Greatly Enhance Their Activity toward Oxygen Reduction. Wang X; Figueroa-Cosme L; Yang X; Luo M; Liu J; Xie Z; Xia Y Nano Lett; 2016 Feb; 16(2):1467-71. PubMed ID: 26760681 [TBL] [Abstract][Full Text] [Related]
19. Octahedral Pd@Pt1.8Ni core-shell nanocrystals with ultrathin PtNi alloy shells as active catalysts for oxygen reduction reaction. Zhao X; Chen S; Fang Z; Ding J; Sang W; Wang Y; Zhao J; Peng Z; Zeng J J Am Chem Soc; 2015 Mar; 137(8):2804-7. PubMed ID: 25675212 [TBL] [Abstract][Full Text] [Related]
20. Atomic Crystal Facet Engineering of Core-Shell Nanotetrahedrons Restricted under Sub-10 Nanometer Region. Su K; Zhang H; Qian S; Li J; Zhu J; Tang Y; Qiu X ACS Nano; 2021 Mar; 15(3):5178-5188. PubMed ID: 33588529 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]