BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 24797091)

  • 1. Circadian rhythm in larval release by the crab Rhithropanopeus harrisii: entrainment model.
    Forward RB; Moeller BP; Cohen JH
    Biol Bull; 2014 Apr; 226(2):92-101. PubMed ID: 24797091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Entrainment of the Circadian Rhythm in Egg Hatching of the Crab Dyspanopeus sayi by Chemical Cues from Ovigerous Females.
    Forward RB; Sanchez KG; Riley PP
    Biol Bull; 2016 Feb; 230(1):15-24. PubMed ID: 26896174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Larval release rhythm of the mole crab Emerita talpoida (Say).
    Ziegler TA; Forward RB
    Biol Bull; 2005 Dec; 209(3):194-203. PubMed ID: 16382167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Circadian clock controlling egg hatching in the cricket (Gryllus bimaculatus).
    Itoh MT; Sumi Y
    J Biol Rhythms; 2000 Jun; 15(3):241-5. PubMed ID: 10885878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Larval biology of the crab Rhithropanopeus harrisii (Gould): a synthesis.
    Forward RB
    Biol Bull; 2009 Jun; 216(3):243-56. PubMed ID: 19556592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Entrainment of circadian rhythm by ambient temperature cycles in mice.
    Refinetti R
    J Biol Rhythms; 2010 Aug; 25(4):247-56. PubMed ID: 20679494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature entrainment of the circadian cuticle deposition rhythm in Drosophila melanogaster.
    Ito C; Goto SG; Tomioka K; Numata H
    J Biol Rhythms; 2011 Feb; 26(1):14-23. PubMed ID: 21252362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Circadian rhythms of embryonic development and hatching in fish: a comparative study of zebrafish (diurnal), Senegalese sole (nocturnal), and Somalian cavefish (blind).
    Villamizar N; Blanco-Vives B; Oliveira C; Dinis MT; Di Rosa V; Negrini P; Bertolucci C; Sánchez-Vázquez FJ
    Chronobiol Int; 2013 Aug; 30(7):889-900. PubMed ID: 23697903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Entrainment of mouse peripheral circadian clocks to <24 h feeding/fasting cycles under 24 h light/dark conditions.
    Hamaguchi Y; Tahara Y; Kuroda H; Haraguchi A; Shibata S
    Sci Rep; 2015 Sep; 5():14207. PubMed ID: 26395309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermocyclic and photocyclic entrainment of circadian locomotor activity rhythms in sleepy lizards, Tiliqua rugosa.
    Ellis DJ; Firth BT; Belan I
    Chronobiol Int; 2009 Oct; 26(7):1369-88. PubMed ID: 19916837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Restricted wheel access following a light cycle inversion slows re-entrainment without internal desynchrony as measured in Per2Luc mice.
    Castillo C; Molyneux P; Carlson R; Harrington ME
    Neuroscience; 2011 May; 182():169-76. PubMed ID: 21392557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Entrainment of 2 subjective nights by daily light:dark:light:dark cycles in 3 rodent species.
    Gorman MR; Elliott JA
    J Biol Rhythms; 2003 Dec; 18(6):502-12. PubMed ID: 14667151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Re-entrainment behavior of Djungarian hamsters (Phodopus sungorus) with different rhythmic phenotype following light-dark shifts.
    Schöttner K; Limbach A; Weinert D
    Chronobiol Int; 2011 Feb; 28(1):58-69. PubMed ID: 21182405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological factors in the circadian rhythm of protein concentration in aqueous humor.
    Liu JH; Lindsey JD; Weinreb RN
    Invest Ophthalmol Vis Sci; 1998 Mar; 39(3):553-8. PubMed ID: 9501866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature can entrain egg laying rhythm of Drosophila but may not be a stronger zeitgeber than light.
    Kannan NN; Reveendran R; Hari Dass S; Manjunatha T; Sharma VK
    J Insect Physiol; 2012 Feb; 58(2):245-55. PubMed ID: 22133310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light and feeding entrainment of the molecular circadian clock in a marine teleost (Sparus aurata).
    Vera LM; Negrini P; Zagatti C; Frigato E; Sánchez-Vázquez FJ; Bertolucci C
    Chronobiol Int; 2013 Jun; 30(5):649-61. PubMed ID: 23688119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amplitude of circadian oscillations entrained by 24-h light-dark cycles.
    Kurosawa G; Goldbeter A
    J Theor Biol; 2006 Sep; 242(2):478-88. PubMed ID: 16678857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The proportion of light-responsive neurons determines the limit cycle properties of the suprachiasmatic nucleus.
    Gu C; Ramkisoensing A; Liu Z; Meijer JH; Rohling JH
    J Biol Rhythms; 2014 Feb; 29(1):16-27. PubMed ID: 24492879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of prokineticin 2 expression by light and the circadian clock.
    Cheng MY; Bittman EL; Hattar S; Zhou QY
    BMC Neurosci; 2005 Mar; 6():17. PubMed ID: 15762991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase angle difference alters coupling relations of functionally distinct circadian oscillators revealed by rhythm splitting.
    Gorman MR; Steele NA
    J Biol Rhythms; 2006 Jun; 21(3):195-205. PubMed ID: 16731659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.