BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 24797146)

  • 1. Neuronal expression of the intermediate conductance calcium-activated potassium channel KCa3.1 in the mammalian central nervous system.
    Turner RW; Kruskic M; Teves M; Scheidl-Yee T; Hameed S; Zamponi GW
    Pflugers Arch; 2015 Feb; 467(2):311-28. PubMed ID: 24797146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activity-Dependent Facilitation of Ca
    Sahu G; Asmara H; Zhang FX; Zamponi GW; Turner RW
    J Neurosci; 2017 Nov; 37(46):11255-11270. PubMed ID: 29038242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Channelopathy of small- and intermediate-conductance Ca
    Nam YW; Downey M; Rahman MA; Cui M; Zhang M
    Acta Pharmacol Sin; 2023 Feb; 44(2):259-267. PubMed ID: 35715699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endothelial K
    Li JJ; Zhao XY; Wang Y; Xu R; Di XH; Zhang Y; Yang H; Han MZ; Bai RY; Xie L; Pang ZD; Zhang X; Zhang J; Du XJ; Deng XL; Zhang Y; Xie W
    Arterioscler Thromb Vasc Biol; 2023 May; 43(5):726-738. PubMed ID: 36951065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. K
    Lu R; Flauaus C; Kennel L; Petersen J; Drees O; Kallenborn-Gerhardt W; Ruth P; Lukowski R; Schmidtko A
    Neuropharmacology; 2017 Oct; 125():386-395. PubMed ID: 28823609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulators of small- and intermediate-conductance calcium-activated potassium channels and their therapeutic indications.
    Wulff H; Kolski-Andreaco A; Sankaranarayanan A; Sabatier JM; Shakkottai V
    Curr Med Chem; 2007; 14(13):1437-57. PubMed ID: 17584055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New positive Ca2+-activated K+ channel gating modulators with selectivity for KCa3.1.
    Coleman N; Brown BM; Oliván-Viguera A; Singh V; Olmstead MM; Valero MS; Köhler R; Wulff H
    Mol Pharmacol; 2014 Sep; 86(3):342-57. PubMed ID: 24958817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of the Ca²⁺-dependent K⁺ channel, KCNN4/KCa3.1, improves tissue protection and locomotor recovery after spinal cord injury.
    Bouhy D; Ghasemlou N; Lively S; Redensek A; Rathore KI; Schlichter LC; David S
    J Neurosci; 2011 Nov; 31(45):16298-308. PubMed ID: 22072681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel phenolic inhibitors of small/intermediate-conductance Ca²⁺-activated K⁺ channels, KCa3.1 and KCa2.3.
    Oliván-Viguera A; Valero MS; Murillo MD; Wulff H; García-Otín AL; Arbonés-Mainar JM; Köhler R
    PLoS One; 2013; 8(3):e58614. PubMed ID: 23516517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laminar shear stress upregulates endothelial Ca²⁺-activated K⁺ channels KCa2.3 and KCa3.1 via a Ca²⁺/calmodulin-dependent protein kinase kinase/Akt/p300 cascade.
    Takai J; Santu A; Zheng H; Koh SD; Ohta M; Filimban LM; Lemaître V; Teraoka R; Jo H; Miura H
    Am J Physiol Heart Circ Physiol; 2013 Aug; 305(4):H484-93. PubMed ID: 23792675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium-dependent potassium channels control proliferation of cardiac progenitor cells and bone marrow-derived mesenchymal stem cells.
    Vigneault P; Naud P; Qi X; Xiao J; Villeneuve L; Davis DR; Nattel S
    J Physiol; 2018 Jun; 596(12):2359-2379. PubMed ID: 29574723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacology of Small- and Intermediate-Conductance Calcium-Activated Potassium Channels.
    Brown BM; Shim H; Christophersen P; Wulff H
    Annu Rev Pharmacol Toxicol; 2020 Jan; 60():219-240. PubMed ID: 31337271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pulmonary hypertension in wild type mice and animals with genetic deficit in KCa2.3 and KCa3.1 channels.
    Wandall-Frostholm C; Skaarup LM; Sadda V; Nielsen G; Hedegaard ER; Mogensen S; Köhler R; Simonsen U
    PLoS One; 2014; 9(5):e97687. PubMed ID: 24858807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PKA reduces the rat and human KCa3.1 current, CaM binding, and Ca2+ signaling, which requires Ser332/334 in the CaM-binding C terminus.
    Wong R; Schlichter LC
    J Neurosci; 2014 Oct; 34(40):13371-83. PubMed ID: 25274816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of KCa3.1 Channels in CNS Diseases: A Concise Review.
    Sugunan S; Nampoothiri SS; Garg T; Krishnamurthy RG
    CNS Neurol Disord Drug Targets; 2016; 15(10):1299-1305. PubMed ID: 27549144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Ca2+-activated K+ channel KCNN4/KCa3.1 contributes to microglia activation and nitric oxide-dependent neurodegeneration.
    Kaushal V; Koeberle PD; Wang Y; Schlichter LC
    J Neurosci; 2007 Jan; 27(1):234-44. PubMed ID: 17202491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium-gated K
    Tarasov MV; Bystrova MF; Kotova PD; Rogachevskaja OA; Sysoeva VY; Kolesnikov SS
    Pflugers Arch; 2017 Feb; 469(2):349-362. PubMed ID: 28028617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Voltage dependence of the Ca(2+)-activated K(+) channel K(Ca)3.1 in human erythroleukemia cells.
    Stoneking CJ; Shivakumar O; Thomas DN; Colledge WH; Mason MJ
    Am J Physiol Cell Physiol; 2013 May; 304(9):C858-72. PubMed ID: 23407879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Junctophilin Proteins Tether a Cav1-RyR2-KCa3.1 Tripartite Complex to Regulate Neuronal Excitability.
    Sahu G; Wazen RM; Colarusso P; Chen SRW; Zamponi GW; Turner RW
    Cell Rep; 2019 Aug; 28(9):2427-2442.e6. PubMed ID: 31461656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. KCa3.1 modulates neuroblast migration along the rostral migratory stream (RMS) in vivo.
    Turner KL; Sontheimer H
    Cereb Cortex; 2014 Sep; 24(9):2388-400. PubMed ID: 23585521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.