These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 24797393)
1. Extending the limits of operating pressure of narrow-bore column liquid chromatography instrumentation. Pauw RD; Degreef B; Ritchie H; Eeltink S; Desmet G; Broeckhoven K J Chromatogr A; 2014 Jun; 1347():56-62. PubMed ID: 24797393 [TBL] [Abstract][Full Text] [Related]
2. Considerations for the use of ultra-high pressures in liquid chromatography for 2.1mm inner diameter columns. Broeckhoven K; Desmet G J Chromatogr A; 2017 Nov; 1523():183-192. PubMed ID: 28743393 [TBL] [Abstract][Full Text] [Related]
3. On the feasibility to conduct gradient liquid chromatography separations in narrow-bore columns at pressures up to 2000bar. De Pauw R; Swier T; Degreef B; Desmet G; Broeckhoven K J Chromatogr A; 2016 Nov; 1473():48-55. PubMed ID: 28029367 [TBL] [Abstract][Full Text] [Related]
4. Exploring the speed-resolution limits of supercritical fluid chromatography at ultra-high pressures. Pauw R; Shoykhet Choikhet K; Desmet G; Broeckhoven K J Chromatogr A; 2014 Dec; 1374():247-253. PubMed ID: 25481350 [TBL] [Abstract][Full Text] [Related]
5. Intrinsic advantages of packed capillaries over narrow-bore columns in very high-pressure gradient liquid chromatography. Gritti F; McDonald T; Gilar M J Chromatogr A; 2016 Jun; 1451():107-119. PubMed ID: 27185055 [TBL] [Abstract][Full Text] [Related]
6. The current revolution in column technology: how it began, where is it going? Gritti F; Guiochon G J Chromatogr A; 2012 Mar; 1228():2-19. PubMed ID: 21872874 [TBL] [Abstract][Full Text] [Related]
7. Fast liquid chromatography: the domination of core-shell and very fine particles. Fekete S; Oláh E; Fekete J J Chromatogr A; 2012 Mar; 1228():57-71. PubMed ID: 21982449 [TBL] [Abstract][Full Text] [Related]
8. Temperature effects in supercritical fluid chromatography: a trade-off between viscous heating and decompression cooling. De Pauw R; Choikhet K; Desmet G; Broeckhoven K J Chromatogr A; 2014 Oct; 1365():212-8. PubMed ID: 25262033 [TBL] [Abstract][Full Text] [Related]
9. Ultra-High-Pressure Ion Chromatography with Suppressed Conductivity Detection at 70 MPa Using Columns Packed with 2.5 μm Anion-Exchange Particles. Wouters S; Dores-Sousa JL; Liu Y; Pohl CA; Eeltink S Anal Chem; 2019 Nov; 91(21):13824-13830. PubMed ID: 31607121 [TBL] [Abstract][Full Text] [Related]
10. Instrument contributions to resolution and sensitivity in ultra high performance liquid chromatography using small bore columns: comparison of diode array and triple quadrupole mass spectrometry detection. Buckenmaier S; Miller CA; van de Goor T; Dittmann MM J Chromatogr A; 2015 Jan; 1377():64-74. PubMed ID: 25547218 [TBL] [Abstract][Full Text] [Related]
11. Importance of instrumentation for fast liquid chromatography in pharmaceutical analysis. Fekete S; Kohler I; Rudaz S; Guillarme D J Pharm Biomed Anal; 2014 Jan; 87():105-19. PubMed ID: 23571029 [TBL] [Abstract][Full Text] [Related]
13. Comparison of the most recent chromatographic approaches applied for fast and high resolution separations: Theory and practice. Fekete S; Veuthey JL; Guillarme D J Chromatogr A; 2015 Aug; 1408():1-14. PubMed ID: 26187764 [TBL] [Abstract][Full Text] [Related]
14. Characterization of peak capacity of microbore liquid chromatography columns using gradient kinetic plots. Hetzel T; Blaesing C; Jaeger M; Teutenberg T; Schmidt TC J Chromatogr A; 2017 Feb; 1485():62-69. PubMed ID: 28093205 [TBL] [Abstract][Full Text] [Related]
15. Comparison of the fast gradient performance of new prototype silica monolithic columns and columns packed with fully porous and core-shell particles. Gritti F; Tanaka N; Guiochon G J Chromatogr A; 2012 May; 1236():28-41. PubMed ID: 22444427 [TBL] [Abstract][Full Text] [Related]
16. Effect of extra-column volume on practical chromatographic parameters of sub-2-μm particle-packed columns in ultra-high pressure liquid chromatography. Wu N; Bradley AC; Welch CJ; Zhang L J Sep Sci; 2012 Aug; 35(16):2018-25. PubMed ID: 22761164 [TBL] [Abstract][Full Text] [Related]
17. Band broadening in fast gradient high-performance liquid chromatography: application to the second generation of 4.6 mm I.D. silica monolithic columns. Gritti F; Guiochon G J Chromatogr A; 2012 May; 1238():77-90. PubMed ID: 22503619 [TBL] [Abstract][Full Text] [Related]
18. Using 1.5 mm internal diameter columns for optimal compatibility with current liquid chromatographic systems. Fekete S; Murisier A; Losacco GL; Lawhorn J; Godinho JM; Ritchie H; Boyes BE; Guillarme D J Chromatogr A; 2021 Aug; 1650():462258. PubMed ID: 34058594 [TBL] [Abstract][Full Text] [Related]
19. A multiscale modelling study on the sense and nonsense of thermal conductivity enhancement of liquid chromatography packings and other potential solutions for viscous heating effects. Deridder S; Smits W; Broeckhoven K; Desmet G J Chromatogr A; 2020 Jun; 1620():461022. PubMed ID: 32204881 [TBL] [Abstract][Full Text] [Related]
20. The impact of extra-column band broadening on the chromatographic efficiency of 5 cm long narrow-bore very efficient columns. Fekete S; Fekete J J Chromatogr A; 2011 Aug; 1218(31):5286-91. PubMed ID: 21726868 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]