BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 24798051)

  • 1. Antioxidants keep the potentially probiotic but highly oxygen-sensitive human gut bacterium Faecalibacterium prausnitzii alive at ambient air.
    Khan MT; van Dijl JM; Harmsen HJ
    PLoS One; 2014; 9(5):e96097. PubMed ID: 24798051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Co-Culture with
    Kim H; Jeong Y; Kang S; You HJ; Ji GE
    Microorganisms; 2020 May; 8(5):. PubMed ID: 32466189
    [No Abstract]   [Full Text] [Related]  

  • 3. How can Faecalibacterium prausnitzii employ riboflavin for extracellular electron transfer?
    Khan MT; Browne WR; van Dijl JM; Harmsen HJ
    Antioxid Redox Signal; 2012 Nov; 17(10):1433-40. PubMed ID: 22607129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The gut anaerobe Faecalibacterium prausnitzii uses an extracellular electron shuttle to grow at oxic-anoxic interphases.
    Khan MT; Duncan SH; Stams AJ; van Dijl JM; Flint HJ; Harmsen HJ
    ISME J; 2012 Aug; 6(8):1578-85. PubMed ID: 22357539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Action and function of Faecalibacterium prausnitzii in health and disease.
    Ferreira-Halder CV; Faria AVS; Andrade SS
    Best Pract Res Clin Gastroenterol; 2017 Dec; 31(6):643-648. PubMed ID: 29566907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inulin-grown
    Fagundes RR; Bourgonje AR; Saeed A; Vich Vila A; Plomp N; Blokzijl T; Sadaghian Sadabad M; von Martels JZH; van Leeuwen SS; Weersma RK; Dijkstra G; Harmsen HJM; Faber KN
    Gut Microbes; 2021; 13(1):1993582. PubMed ID: 34793284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of Computational Data Modeling to a Large-Scale Population Cohort Assists the Discovery of Inositol as a Strain-Specific Substrate for
    Dogra SK; Dardinier A; Mainardi F; Siegwald L; Bartova S; Le Roy C; Chou CJ
    Nutrients; 2023 Mar; 15(6):. PubMed ID: 36986043
    [No Abstract]   [Full Text] [Related]  

  • 8. Growth-promoting effect of alginate on Faecalibacterium prausnitzii through cross-feeding with Bacteroides.
    Murakami R; Hashikura N; Yoshida K; Xiao JZ; Odamaki T
    Food Res Int; 2021 Jun; 144():110326. PubMed ID: 34053530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients.
    Sokol H; Pigneur B; Watterlot L; Lakhdari O; Bermúdez-Humarán LG; Gratadoux JJ; Blugeon S; Bridonneau C; Furet JP; Corthier G; Grangette C; Vasquez N; Pochart P; Trugnan G; Thomas G; Blottière HM; Doré J; Marteau P; Seksik P; Langella P
    Proc Natl Acad Sci U S A; 2008 Oct; 105(43):16731-6. PubMed ID: 18936492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Faecalibacterium prausnitzii upregulates regulatory T cells and anti-inflammatory cytokines in treating TNBS-induced colitis.
    Qiu X; Zhang M; Yang X; Hong N; Yu C
    J Crohns Colitis; 2013 Dec; 7(11):e558-68. PubMed ID: 23643066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive analysis of 84
    Bai Z; Zhang N; Jin Y; Chen L; Mao Y; Sun L; Fang F; Liu Y; Han M; Li G
    Front Cell Infect Microbiol; 2022; 12():919701. PubMed ID: 36683686
    [No Abstract]   [Full Text] [Related]  

  • 12. Searching for the Bacterial Effector: The Example of the Multi-Skilled Commensal Bacterium
    Martín R; Bermúdez-Humarán LG; Langella P
    Front Microbiol; 2018; 9():346. PubMed ID: 29559959
    [No Abstract]   [Full Text] [Related]  

  • 13. An Integrative Multiomics Approach to Characterize Prebiotic Inulin Effects on
    Park JH; Song WS; Lee J; Jo SH; Lee JS; Jeon HJ; Kwon JE; Kim YR; Baek JH; Kim MG; Yang YH; Kim BG; Kim YG
    Front Bioeng Biotechnol; 2022; 10():825399. PubMed ID: 35252133
    [No Abstract]   [Full Text] [Related]  

  • 14. Possible Benefits of
    Maioli TU; Borras-Nogues E; Torres L; Barbosa SC; Martins VD; Langella P; Azevedo VA; Chatel JM
    Front Pharmacol; 2021; 12():740636. PubMed ID: 34925006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergy and oxygen adaptation for development of next-generation probiotics.
    Khan MT; Dwibedi C; Sundh D; Pradhan M; Kraft JD; Caesar R; Tremaroli V; Lorentzon M; Bäckhed F
    Nature; 2023 Aug; 620(7973):381-385. PubMed ID: 37532933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revealing antimicrobial resistance profile of the novel probiotic candidate Faecalibacterium prausnitzii DSM 17677.
    Machado D; Barbosa JC; Domingos M; Almeida D; Andrade JC; Freitas AC; Gomes AM
    Int J Food Microbiol; 2022 Feb; 363():109501. PubMed ID: 34953344
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Dikeocha IJ; Al-Kabsi AM; Chiu HT; Alshawsh MA
    Biomedicines; 2022 May; 10(5):. PubMed ID: 35625865
    [No Abstract]   [Full Text] [Related]  

  • 18. Causal Relationship between Diet-Induced Gut Microbiota Changes and Diabetes: A Novel Strategy to Transplant Faecalibacterium prausnitzii in Preventing Diabetes.
    Ganesan K; Chung SK; Vanamala J; Xu B
    Int J Mol Sci; 2018 Nov; 19(12):. PubMed ID: 30467295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Both living and dead Faecalibacterium prausnitzii alleviate house dust mite-induced allergic asthma through the modulation of gut microbiota and short-chain fatty acid production.
    Hu W; Lu W; Li L; Zhang H; Lee YK; Chen W; Zhao J
    J Sci Food Agric; 2021 Oct; 101(13):5563-5573. PubMed ID: 33709404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced butyrate formation by cross-feeding between Faecalibacterium prausnitzii and Bifidobacterium adolescentis.
    Rios-Covian D; Gueimonde M; Duncan SH; Flint HJ; de los Reyes-Gavilan CG
    FEMS Microbiol Lett; 2015 Nov; 362(21):. PubMed ID: 26420851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.