These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
284 related articles for article (PubMed ID: 24798055)
1. Tuning composition and architecture of biomimetic scaffolds for enhanced matrix synthesis by murine cardiomyocytes. Gishto A; Farrell K; Kothapalli CR J Biomed Mater Res A; 2015 Feb; 103(2):693-708. PubMed ID: 24798055 [TBL] [Abstract][Full Text] [Related]
2. Three-dimensional poly-(ε-caprolactone) nanofibrous scaffolds directly promote the cardiomyocyte differentiation of murine-induced pluripotent stem cells through Wnt/β-catenin signaling. Chen Y; Zeng D; Ding L; Li XL; Liu XT; Li WJ; Wei T; Yan S; Xie JH; Wei L; Zheng QS BMC Cell Biol; 2015 Sep; 16():22. PubMed ID: 26335746 [TBL] [Abstract][Full Text] [Related]
3. Aligned conductive core-shell biomimetic scaffolds based on nanofiber yarns/hydrogel for enhanced 3D neurite outgrowth alignment and elongation. Wang L; Wu Y; Hu T; Ma PX; Guo B Acta Biomater; 2019 Sep; 96():175-187. PubMed ID: 31260823 [TBL] [Abstract][Full Text] [Related]
4. Novel xeno-free human heart matrix-derived three-dimensional scaffolds. Holt-Casper D; Theisen JM; Moreno AP; Warren M; Silva F; Grainger DW; Bull DA; Patel AN J Transl Med; 2015 Jun; 13():194. PubMed ID: 26084398 [TBL] [Abstract][Full Text] [Related]
5. Synthesis and secretome release by human bone marrow mesenchymal stem cell spheroids within three-dimensional collagen hydrogels: Integrating experiments and modelling. Joshi J; Abnavi MD; Kothapalli CR J Tissue Eng Regen Med; 2019 Oct; 13(10):1923-1937. PubMed ID: 31350819 [TBL] [Abstract][Full Text] [Related]
6. Influence of ECM proteins and their analogs on cells cultured on 2-D hydrogels for cardiac muscle tissue engineering. LaNasa SM; Bryant SJ Acta Biomater; 2009 Oct; 5(8):2929-38. PubMed ID: 19457460 [TBL] [Abstract][Full Text] [Related]
8. Acellular cardiac extracellular matrix as a scaffold for tissue engineering: in vitro cell support, remodeling, and biocompatibility. Eitan Y; Sarig U; Dahan N; Machluf M Tissue Eng Part C Methods; 2010 Aug; 16(4):671-83. PubMed ID: 19780649 [TBL] [Abstract][Full Text] [Related]
10. Coaxial nanofibrous scaffolds mimicking the extracellular matrix transition in the wound healing process promoting skin regeneration through enhancing immunomodulation. Sun L; Li J; Gao W; Shi M; Tang F; Fu X; Chen X J Mater Chem B; 2021 Feb; 9(5):1395-1405. PubMed ID: 33462572 [TBL] [Abstract][Full Text] [Related]
11. Elucidating molecular events underlying topography mediated cardiomyogenesis of stem cells on 3D nanofibrous scaffolds. Ghosh LD; Jain A; Sundaresan NR; Chatterjee K Mater Sci Eng C Mater Biol Appl; 2018 Jul; 88():104-114. PubMed ID: 29636125 [TBL] [Abstract][Full Text] [Related]
12. Matrix production and remodeling capacity of cardiomyocyte progenitor cells during in vitro differentiation. Bax NA; van Marion MH; Shah B; Goumans MJ; Bouten CV; van der Schaft DW J Mol Cell Cardiol; 2012 Oct; 53(4):497-508. PubMed ID: 22820459 [TBL] [Abstract][Full Text] [Related]
13. Interwoven Aligned Conductive Nanofiber Yarn/Hydrogel Composite Scaffolds for Engineered 3D Cardiac Anisotropy. Wu Y; Wang L; Guo B; Ma PX ACS Nano; 2017 Jun; 11(6):5646-5659. PubMed ID: 28590127 [TBL] [Abstract][Full Text] [Related]
14. Biohybrid cardiac ECM-based hydrogels improve long term cardiac function post myocardial infarction. Efraim Y; Sarig H; Cohen Anavy N; Sarig U; de Berardinis E; Chaw SY; Krishnamoorthi M; Kalifa J; Bogireddi H; Duc TV; Kofidis T; Baruch L; Boey FYC; Venkatraman SS; Machluf M Acta Biomater; 2017 Mar; 50():220-233. PubMed ID: 27956366 [TBL] [Abstract][Full Text] [Related]
15. Polycaprolactone nanofiber interspersed collagen type-I scaffold for bone regeneration: a unique injectable osteogenic scaffold. Baylan N; Bhat S; Ditto M; Lawrence JG; Lecka-Czernik B; Yildirim-Ayan E Biomed Mater; 2013 Aug; 8(4):045011. PubMed ID: 23804651 [TBL] [Abstract][Full Text] [Related]
16. Electroactive graphene composite scaffolds for cardiac tissue engineering. Hitscherich P; Aphale A; Gordan R; Whitaker R; Singh P; Xie LH; Patra P; Lee EJ J Biomed Mater Res A; 2018 Nov; 106(11):2923-2933. PubMed ID: 30325093 [TBL] [Abstract][Full Text] [Related]
17. Nitric oxide stimulates matrix synthesis and deposition by adult human aortic smooth muscle cells within three-dimensional cocultures. Simmers P; Gishto A; Vyavahare N; Kothapalli CR Tissue Eng Part A; 2015 Apr; 21(7-8):1455-70. PubMed ID: 25597545 [TBL] [Abstract][Full Text] [Related]
18. Polycaprolactone/oligomer compound scaffolds for cardiac tissue engineering. Reddy CS; Venugopal JR; Ramakrishna S; Zussman E J Biomed Mater Res A; 2014 Oct; 102(10):3713-25. PubMed ID: 24288184 [TBL] [Abstract][Full Text] [Related]
19. Electrospun biocomposite nanofibrous patch for cardiac tissue engineering. Prabhakaran MP; Kai D; Ghasemi-Mobarakeh L; Ramakrishna S Biomed Mater; 2011 Oct; 6(5):055001. PubMed ID: 21813957 [TBL] [Abstract][Full Text] [Related]
20. Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Naahidi S; Jafari M; Logan M; Wang Y; Yuan Y; Bae H; Dixon B; Chen P Biotechnol Adv; 2017 Sep; 35(5):530-544. PubMed ID: 28558979 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]