BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 24798076)

  • 1. Fungal lysis by a soil bacterium fermenting cellulose.
    Tolonen AC; Cerisy T; El-Sayyed H; Boutard M; Salanoubat M; Church GM
    Environ Microbiol; 2015 Aug; 17(8):2618-27. PubMed ID: 24798076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Population level analysis of evolved mutations underlying improvements in plant hemicellulose and cellulose fermentation by Clostridium phytofermentans.
    Mukherjee S; Thompson LK; Godin S; Schackwitz W; Lipzen A; Martin J; Blanchard JL
    PLoS One; 2014; 9(1):e86731. PubMed ID: 24466216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellulose utilization in forest litter and soil: identification of bacterial and fungal decomposers.
    Stursová M; Zifčáková L; Leigh MB; Burgess R; Baldrian P
    FEMS Microbiol Ecol; 2012 Jun; 80(3):735-46. PubMed ID: 22379979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fungi unearthed: transcripts encoding lignocellulolytic and chitinolytic enzymes in forest soil.
    Kellner H; Zak DR; Vandenbol M
    PLoS One; 2010 Jun; 5(6):e10971. PubMed ID: 20532045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of a Biomass-Fermenting Bacterium To Resist Lignin Phenolics.
    Cerisy T; Souterre T; Torres-Romero I; Boutard M; Dubois I; Patrouix J; Labadie K; Berrabah W; Salanoubat M; Doring V; Tolonen AC
    Appl Environ Microbiol; 2017 Jun; 83(11):. PubMed ID: 28363966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Responses of soil cellulolytic fungal communities to elevated atmospheric CO₂ are complex and variable across five ecosystems.
    Weber CF; Zak DR; Hungate BA; Jackson RB; Vilgalys R; Evans RD; Schadt CW; Megonigal JP; Kuske CR
    Environ Microbiol; 2011 Oct; 13(10):2778-93. PubMed ID: 21883796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of microcrystalline cellulose and non-pretreated plant biomass by a cell-free extracellular cellulase/hemicellulase system from the extreme thermophilic bacterium Caldicellulosiruptor bescii.
    Kanafusa-Shinkai S; Wakayama J; Tsukamoto K; Hayashi N; Miyazaki Y; Ohmori H; Tajima K; Yokoyama H
    J Biosci Bioeng; 2013 Jan; 115(1):64-70. PubMed ID: 22921519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional diversity of carbohydrate-active enzymes enabling a bacterium to ferment plant biomass.
    Boutard M; Cerisy T; Nogue PY; Alberti A; Weissenbach J; Salanoubat M; Tolonen AC
    PLoS Genet; 2014 Nov; 10(11):e1004773. PubMed ID: 25393313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Living in a fungal world: impact of fungi on soil bacterial niche development.
    Boer Wd; Folman LB; Summerbell RC; Boddy L
    FEMS Microbiol Rev; 2005 Sep; 29(4):795-811. PubMed ID: 16102603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of High Cellulolytic Activity in Symbiotic Streptomyces through Selection of Expanded Gene Content and Coordinated Gene Expression.
    Book AJ; Lewin GR; McDonald BR; Takasuka TE; Wendt-Pienkowski E; Doering DT; Suh S; Raffa KF; Fox BG; Currie CR
    PLoS Biol; 2016 Jun; 14(6):e1002475. PubMed ID: 27276034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supplementing with non-glycoside hydrolase proteins enhances enzymatic deconstruction of plant biomass.
    Su X; Zhang J; Mackie RI; Cann IK
    PLoS One; 2012; 7(8):e43828. PubMed ID: 22952777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellulose degradation in anaerobic environments.
    Leschine SB
    Annu Rev Microbiol; 1995; 49():399-426. PubMed ID: 8561466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The first evidence that a single cellulase can be essential for cellulose degradation in a cellulolytic microorganism.
    Wilson DB
    Mol Microbiol; 2009 Dec; 74(6):1287-8. PubMed ID: 19788547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell walls and lysis of Mortierella parvispora hyphae.
    Pengra RM; Cole MA; Alexander M
    J Bacteriol; 1969 Mar; 97(3):1056-61. PubMed ID: 5813340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycoside hydrolase family 9 processive endoglucanase from Clostridium phytofermentans: heterologous expression, characterization, and synergy with family 48 cellobiohydrolase.
    Zhang XZ; Sathitsuksanoh N; Zhang YH
    Bioresour Technol; 2010 Jul; 101(14):5534-8. PubMed ID: 20206499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Community dynamics of cellulose-adapted thermophilic bacterial consortia.
    Eichorst SA; Varanasi P; Stavila V; Zemla M; Auer M; Singh S; Simmons BA; Singer SW
    Environ Microbiol; 2013 Sep; 15(9):2573-87. PubMed ID: 23763762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of cellulolytic and hemicellulolytic abilities of fungi isolated from coffee residue and sawdust composts.
    Eida MF; Nagaoka T; Wasaki J; Kouno K
    Microbes Environ; 2011; 26(3):220-7. PubMed ID: 21558674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellulolytic activity of some soil fungi.
    Lal R; Mishra MM
    Folia Microbiol (Praha); 1978; 23(1):68-71. PubMed ID: 624511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellulose and cellulolysis.
    Norkrans B
    Adv Appl Microbiol; 1967; 9():91-130. PubMed ID: 4866753
    [No Abstract]   [Full Text] [Related]  

  • 20. The composition, localization and function of low-temperature-adapted microbial communities involved in methanogenic degradations of cellulose and chitin from Qinghai-Tibetan Plateau wetland soils.
    Dai Y; Yan Z; Jia L; Zhang S; Gao L; Wei X; Mei Z; Liu X
    J Appl Microbiol; 2016 Jul; 121(1):163-76. PubMed ID: 27123875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.